期刊文献+

基于水平集的PSO算法的改进 被引量:1

IMPROVEMENT OF PSO ALGORITHM BASED ON LEVEL SET
下载PDF
导出
摘要 粒子群优化算法PSO(Particle Swarm Optimization)目前仍存在着早熟收敛和收敛速度较慢的难题,提出一种新的PSO改进算法。该算法利用水平集对PSO的每一代粒子按照适应度进行划分,把与目标相关的所有信息结合在一起,改变了原有的PSO进化公式,提高了算法的收敛速度;其次,对于每一代的某个个体进行变异,使其变异到粒子密度低的空间中去,从而提高了粒子的多样性,减少早熟发生的机会。实验证明,这种算法是有效的。 Recently there still exist some problems in particle swarm optimization (PSO) algorithm including prematurity and slow convergence. To solve these problems, an improved PSO algorithm based on level set is presented. Particles of each generation are classified, and all the aim-relevant information is arranged effectively. The evolution formula of PSO is changed, and the convergence speed of the algorithm is accelerated. In order to improve the diversity of population and decrease the chance of prematurity, mutation process is carried out for a certain member in each generation and they are moved to room of low-density. Experiment shows that this algorithm is effective.
作者 宋超 葛洪伟
出处 《计算机应用与软件》 CSCD 北大核心 2008年第4期269-270,275,共3页 Computer Applications and Software
关键词 粒子群优化算法 水平集 密度 Particle swarm optimization(PSO) algorithm Level set Density
  • 相关文献

参考文献7

  • 1Kennedy J,Eberhart R.Particle Swarm Optimization[C].IEEE.nt.Conf.on Neural,Network,,Perth,Australia,1995:1942-1948. 被引量:1
  • 2Eberhart R,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of the 6th Int.Symposium on Micro Machine and Human,Science,Nagoya,Japan,1995:39-43. 被引量:1
  • 3Osher S,Sethian J A.Fronts Propagating with curvature dependent speed:Algorithms based on the Hamilton-Jacobiformulation[J].Journal of Computational Physics,1988,79(1):12-49. 被引量:1
  • 4李庆华,杨世达,阮幼林.基于水平集的遗传算法优化的改进[J].计算机研究与发展,2006,43(9):1624-1629. 被引量:12
  • 5蔡自兴 等.人工智能及其应用[M].清华大学出版社,2002.. 被引量:9
  • 6Esmin A A A,LambertTorres G,Zambroni deSouza A C.A hybrid particle swarm optimization applied to loss power minimization.IEEE Transactions on Power Systems,2005,20(2):859-866. 被引量:1
  • 7Esmin A A A,LambertTorres G,Alvarenga GB.Hybrid Evolutionary Algorithm Based on PSO and GA mutation Proceedings of the Sixth international Conference on Hybrid Intelligent System. 被引量:1

二级参考文献7

共引文献19

同被引文献9

  • 1高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 2曾祥萍,朱云龙,南琳.基于群体智能策略的编队控制[J].微计算机信息,2006(09Z):210-212. 被引量:2
  • 3Kennedy J,Eberhert R.Particle Swarm optimization [C].IEEE International Conference on Neural Networks.1995:1942-1948. 被引量:1
  • 4Shi.Y,Eberhart.R.C.A modified particle swarm optimizer[C].Proc the IEEE International Conference on Evolutionary Compution .NJ: IEEE Press, 1998:69-73. 被引量:1
  • 5Shi Y H and Eberhart R C.Parmneter selection in particle swarm Optimization[C]. Annual Conference on Evolutionary Programming, SanDiego,March 1998. 被引量:1
  • 6M.Clerc and J.Kennedy.The Particle Swarm:explosion,stability and convergence in a Multi--Dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation.Feb.2002,6:58-73. 被引量:1
  • 7Huiyuan F.A modification to particle swarm optimization algorithm[J].Engineering Computations, 2002,19(8):970-989. 被引量:1
  • 8Nikos P,Rachid D.Geodesic active contours and level sets for the detection and tracking of moving objects [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):301-312. 被引量:1
  • 9Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]. Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, N J: IEEE Press, 2001,101-106. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部