期刊文献+

末段反TBM火力-目标匹配优化及APSO求解算法 被引量:13

Attractor particle swarm optimization for anti-TBM firepower-target match modeling in terminal phase
下载PDF
导出
摘要 末段反导作战火力任务分配建模是一个复杂的不确定多约束问题建模,首先建立了末段双层反战术弹道导弹火力-目标匹配模型,其次对传统粒子群优化算法(particle swarm optimization,PSO)进行改进给出了一种吸引子PSO(attractor PSO,APSO),APSO引入吸引子,在保持群体多样性的基础上,将粒子聚集在最优值附近,增加相应区域的粒子密度。其中,为了方便问题求解,将火力-目标匹配优化任务进行分解,转化成多个子时间段,再用APSO对多个子时间段进行求解。仿真实例表明,APSO有更加优良的收敛精度尤其是收敛速度,满足了反TBM作战火力任务分配的高时效性要求。 Anti-missile combat firepower task allocation modeling in terminal phase is a complex uncertain multi-constraint problem. Firstly, a two-layer anti-tactical ballistic missile (TBM) firepower-target match mo- del is established. Secondly, the optimization algorithm named attractor particle swarm optimization(APSO) is given to solve this model. The concept of attractor is introduced, which enhances power of local search and at- tracts particles to gather in the best position. In order to solve the problem, the firepower-target task is decom- posed into many sub-periods and APSO is used to optimize such sub-periods. Experimental studies show that APSO algorithm is better in convergence accuracy especially in convergence speed, and it fulfills the demand of anti-TBM combat firepower task allocation efficiently.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第5期993-999,共7页 Systems Engineering and Electronics
基金 全军军事学研究生课题资助课题
关键词 火力-目标匹配建模 任务分解 粒子群优化 吸引子 {irepower-target match modeling task decomposition particle swarm optimization (PSO) attractor
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proc. of the IEEE International CoTz h'rence on Neural Networks, 1995:1942- 1948. 被引量:1
  • 2Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]// Proc. of the 6th Micro Machine and Human Science, 1995:39-43. 被引量:1
  • 3杜荣华.一种促进PSO全局收敛的参数调整策略[J].系统工程与电子技术,2009,31(6):1454-1457. 被引量:9
  • 4Khorshidian H, Javadian N, Zandieh M, et al. A genetic algorithm for JIT single machine scheduling with preemption and machine idle time [J ]. Expert Systems with Applications, 2011, 38 (7):7911-7918. 被引量:1
  • 5Shi X H, Liang Y C, Lee H P, et al. An improved GA and a novel PSO-GA-based hybrid algorithm[J]. Information Processing Letters, 2005, 93 (5):255-261. 被引量:1
  • 6Kao Y, Zahara E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions[J]. Applied Soft Computing, 2008, 8:849 - 857. 被引量:1
  • 7Sha D Y, Hsu C Y. A hybrid particle swarm optimization for job shop scheduling problem[J]. Computers & Industrial Engineering, 2006, 51 (4):791-808. 被引量:1
  • 8Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]//Proc, of the Congress on Evolutionary Computation, 1999 : 1951 - 1957. 被引量:1
  • 9丁铸,马大为,汤铭端,张学锋.基于禁忌退火粒子群算法的火力分配[J].系统仿真学报,2006,18(9):2480-2483. 被引量:26
  • 10高尚,杨静宇.武器-目标分配问题的粒子群优化算法[J].系统工程与电子技术,2005,27(7):1250-1252. 被引量:55

二级参考文献53

共引文献142

同被引文献118

引证文献13

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部