期刊文献+

Hilbert空间中的g-Riesz框架 被引量:14

G-Riesz frames in Hilbert spaces
原文传递
导出
摘要 g-框架作为Hilbert空间中的推广框架最近被提出,它们有许多和框架类似的性质,但并不是所有的性质都是相似的.Christensen已指出了每个Riesz框架都包含一个Riesz基.本文指出并不是所有的g-Riesz框架都包含一个g-Riesz基,但我们得到了每个g-Riesz框架都包含一个无冗g-框架,同时给出了Hilbert空间中的g-Riesz框架的一个充分必要条件,由此可以得到Riesz框架的刻画.最后讨论Hilbert空间中的g-Riesz框架在扰动下的稳定性.g-Riesz框架的这些性质与Riesz框架的性质并不是一样的. G-frames, which were proposed recently as generalized frames in Hilbert spaces, share many similar properties with frames, but not all the properties of them are similar. Christensen presented that every Riesz frame contains a Riesz basis. In this paper, the authors showed that not all g-Riesz frames contain a g-Riesz basis, but they obtained that every g-Riesz frame contains an exact g-frame. They also gave a necessary and sumcient condition for a g-Riesz frame in a Hilbert space. Prom this, they might get the characterization of Riesz frames. Lastly the authors considered the stability of a g-Riesz frame for a Hilbert space under perturbations. These properties of g-Riesz frames in Hilbert spaces are not similar to those of Riesz frames.
出处 《中国科学:数学》 CSCD 北大核心 2011年第1期53-68,共16页 Scientia Sinica:Mathematica
基金 福建省自然科学基金(批准号:2009J01007) 福建省教育厅基金(批准号:JA08013)资助项目
关键词 框架 G-框架 g-Riesz框架 无冗g-框架 扰动 Frame g-frame, g-Riesz frame, exact g-frame perturbation
  • 相关文献

参考文献5

二级参考文献78

  • 1YANG Deyun & ZHOU Xingwei Department of Information & Technology, Nankai University, Tianjin 300071, China,Department of Mathematics, Nankai University, Tianjin 300071, China,Department of Computer Science, Taishan College, Taian 271000, China.Irregular wavelet frames on L^2 (R^n)[J].Science China Mathematics,2005,48(2):277-287. 被引量:4
  • 2LI YunZhang,LIAN QiaoFang.Gabor systems on discrete periodic sets[J].Science China Mathematics,2009,52(8):1639-1660. 被引量:4
  • 3施咸亮,陈芳.仿射框架的必要条件和充分条件[J].中国科学(A辑),2005,35(7):831-840. 被引量:6
  • 4施咸亮,陈芳.Gabor框架的必要条件[J].中国科学(A辑),2006,36(12):1413-1421. 被引量:5
  • 5Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952) 被引量:1
  • 6Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000) 被引量:1
  • 7Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003 被引量:1
  • 8Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001) 被引量:1
  • 9Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007) 被引量:1
  • 10Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006) 被引量:1

共引文献49

同被引文献60

引证文献14

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部