期刊文献+

Christensen的改进结果在研究框架扰动中的应用 被引量:4

Applications of improved Christensen frame result in the study of frame perturbations
下载PDF
导出
摘要 利用改进的框架结果研究了Hilbert空间中框架的扰动问题,得到了框架扰动的新形式,展示了该改进结果在研究框架扰动理论中的重要作用. The improved result concerning Christensen frame was used to study the perturbation of frames in Hilbert space, showing the important role that this result can play in perturbation theory of frames.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期115-118,共4页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10771082)
关键词 HILBERT空间 框架 RIESZ基 扰动 Hilbert space frame Riesz basis perturbation
  • 相关文献

参考文献10

  • 1DUFFIN R J, SCHAEFFER A C. A class of nonhar- monic Fourier series[J]. Trans Amer Math Soc, 1952, 72(2): 341-366. 被引量:1
  • 2DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions[J]. J Math Phys, 1986, 27(5): 1 271-I 283. 被引量:1
  • 3DAUBECHIES I, GROSSMANN A. Frames in the Bargmann space of entire functions[J]. Comm Pure Appl Math,1988,41(2): 151-164. 被引量:1
  • 4CHRISTENSEN O. Perturbation of frames and appli- cations to Gabor frames: Gabor Analysis and A1- gorithms[C]//Appl Numer Harmon Anal. Boston: Birkhiuser, 1998: 193-209. 被引量:1
  • 5CHI:tISTENSEN Oo A Paley-Wiener theorem for frames[J]. Proc Amer Math Soc, 1995, 123(7): 2 199-2 202. 被引量:1
  • 6CASAZZA P G, CHRISTENSEN O. Perturbation of operators and applications to frame theory[J]. J Fourier Anal Appl, 1997, 3(5): 543-557. 被引量:1
  • 7YOUNG R M. An introduction to nonharmonic Fourier series[M]. New York: Academic Press, 1980: 184-190. 被引量:1
  • 8CHRISTENSEN Go An introduction to frames and Riesz bases[M]. Boston: BirkhEuser, 2002: 88-124. 被引量:1
  • 9CHRISTENSEN O. Frames and pseudo-inverses[J]. J Math Anal Appl,1995, 195(2): 401-414. 被引量:1
  • 10CHRISTENSEN O. Frames and the projection[J]. Appl Comput Anal, 1993, 1(1): 50-53. 被引量:1

同被引文献58

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier seriers [J]. Trans Amer Math Soc, 1952, 72(2): 341-366. 被引量:1
  • 2Daubechies L Ten lectures on wavelets [M]. Philadelphia: SIAM, 1992: 53-105. 被引量:1
  • 3Feichtinger H G, Strohmer T. Gabor analysis and algorithms: Theory and applications [M]. Boston: Birkhauser, 1998: 295-452. 被引量:1
  • 4Feichtinger H G, Strohmer T. Advances in Gabor analysis [M]. Boston: Birkhsuser, 2003: 153-195. 被引量:1
  • 5Casazza P G. Modern tools for Weyl-Heisenberg frame theory [J]. Adv Imag Elect Phys, 2001, 115(1): 1-12. 被引量:1
  • 6Christensen O. An introduction to frames and l:tiesz bases [M]. Boston: Birkauser, 2002: 1-136. 被引量:1
  • 7Christensen O. Frames, Riesz bases, and discrete Gabor/wavelete expansions [J]. Bull Amer Math Soc, 2001, 38(3): 273-291. 被引量:1
  • 8Casazza P G, Kutyniok G, Lammers M C. Duality principles in frame theory [J]. J Fourier Anal Appl, 2004 10(4): 383-408. 被引量:1
  • 9Balan R. Equivalence relations and distances between Hilbert frames [J]. Proc Amer Math Soc, 1999, 127(8): 2353-2366. 被引量:1
  • 10Balan R, Casazza P G, Edidin D, et al. A new identity for Parseval frames [J]. Proc Amer Math Soc, 2007 135(4): 1007-1015. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部