期刊文献+

陡坡密集点云双重滤波方法研究 被引量:12

Double-Filtering Algorithm for Dense Point Cloud with Steep Slope
下载PDF
导出
摘要 用地形三维激光扫描仪监测陡坡表面的细微变化,关键技术之一是对原始点云的精确滤波,即从密集点云中准确滤除非地形点,保留真实地形点。针对地势陡峭、表面复杂、植被多、密度分布极不均匀的陡坡点云,笔者发展了一种双重滤波方法:在对原始点云进行投影面变换的基础上,采用变窗口均值限差法滤除明显的非地形点,完成粗滤波;通过局部区域增长法找出绝大多数地形点,以占优势的地形点为参考,用局部最小二乘曲面拟合法对剩余未分类数据点进行检核,分离出非地形点,完成精滤波。文中选用3个不同类型的陡坡点云实例验证了该方法对于陡坡密集点云具有良好的滤波效果。该算法对野外大场景三维激光扫描点云滤波也有一定的参考价值。 Point cloud filtering is a difficult problem for deformation monitoring with 3D terrestrial scanner,especially for some steep slope that has complex surface,wide coverage vegetation,and inhomogeneous density point cloud.In this paper,the author developed an effective double-filtering algorithm to solve the above problem.The algorithm has four steps:First,to transform the coordinates of the point cloud through a projection on a plane,which is fitted though least square algorithm with original point clouds,this operation slows down the steep slope;Secondly,to remove away obvious non-topographic points using a variable size mean tolerance value algorithm;Thirdly,to find out most of real topographic points using an algorithm called local regional growing;Fourthly,Fitting least square curves with local real topographic points,using these curves to check unclassified points,separate real topographic points from non-topographic points.The former two steps called rough-filtering and the latter two steps called precise-filtering.The author selected three types of sleep slope point cloud data to verify the algorithm,result proves that the algorithm has good effect and can meet the requirement.The algorithm also has referential value for other outdoor point clouds.
出处 《地理与地理信息科学》 CSSCI CSCD 北大核心 2011年第1期7-10,F0002,共5页 Geography and Geo-Information Science
关键词 点云 投影变换 局部区域增长 最小二乘曲面拟合 双重滤波 point cloud project conversion local regional growing least square curve fitting double-filtering
  • 相关文献

参考文献16

  • 1PROKOP A, PANHOLZER H. Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides[J]. Natural Hazards and Earth System Sciences, 2009, 9. 1921 - 1928. 被引量:1
  • 2SUI L,WANG X,ZHAO D,et al. Application of 3D laser scannet for monitoring of landslide hazards[A]. XXI ISPRS Symposium[C]. 2008. 277-282. 被引量:1
  • 3OPPIKOFER T,JABOYEDOFF M, BLIKRA L, et al. Characterization and monitoring of the Aknes rockslide using terrestri al laser scanning[J]. Natural Hazards and Earth System Science, 2009,9 . 1003- 1019. 被引量:1
  • 4ABELLAN A,JABOYEDOFF M, OPPIKOFER T, et al. Detec tion of millimetric deformation using a terrestrial laser scanner: Experiment and application to a rockfall event[J]. Natural Hazards and Earth System Sciences, 2009,9 : 365-372. 被引量:1
  • 5刘昌军,丁留谦,孙东亚,等.海量激光点云的分块处理及植被自动过滤技术研究[A].第一届全国激光雷达对地观测高级学术研讨会[C].2010.101-104. 被引量:1
  • 6刘春,陆春.三维激光扫描数据的压缩与地形采样[J].遥感信息,2005,27(2):6-10. 被引量:19
  • 7BITELLI G, DUBBINI M, ZANUTTA A. Terrestrial laser scanning and digital photogrammetry techniques to moinitor landslides bodies[A].XXth ISPRS Congress[C]. Turkey, 2004. 246- 251. 被引量:1
  • 8JIANG J J, MING Y. Classification and filtering of LiDAR point clouds for DTM generation[A]. ISPRS Commission VII Midterm Symposium" Remote Sensing: From Pixels to Processes [C].The Netherlands,2006. 被引量:1
  • 9BAMEA S,FILIN S,ALCHANATIES V. A supervised approach for object extraction from terrestrial laser point clouds demonstrated on trees[A]. International Archives of Photogrammetry and Remote Sensing[C]. 2007. 135-140. 被引量:1
  • 10TOVAN D, PFEIFER N. Segmentation based robust interpolation:A new approach to laser data filtering[A]. Laser Scanning 2005[C]. 2005.79-84. 被引量:1

二级参考文献44

共引文献124

同被引文献109

引证文献12

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部