期刊文献+

元数据记录的自动翻译:德州历史数字图书馆个例分析 被引量:2

Metadata Records Translation:The Case of the Portal to Texas History
原文传递
导出
摘要 对Google、Systran和Bing三个在线翻译系统在德州历史数字图书馆元数据翻译性能上的表现进行人工评价,评价指标包括:流利程度、充分程度、误译数目和漏译数目。分析得出Google和Bing在没有经过任何语料训练的情况下均达到或超越"非母语中文"的翻译水平,最后提出利用在线翻译系统实现数字图书馆多语言信息存取的几种策略。 In this paper, performance of online translation systems including Google, Systran and Bing on translating metadata re- cords derived from a digital library- Portal to Texas History- is manually evaluated using four measures: fluency, adequacy, incorrect translation, and missing translation. The results demonstrated that Google and Bing could achieve "non-native Chinese" level of per- formance. The paper concludes with three possible strategies of implementing muhilingual information access in digital libraries applying machine translation to metadata records.
出处 《图书情报工作》 CSSCI 北大核心 2011年第2期16-20,111,共6页 Library and Information Service
关键词 GOOGLE BING Systran 在线翻译系统 德州历史数字图书馆 元数据 人工评价 Google Bing Systran online translation system The Portal to Texas History metadata manual evaluation
  • 相关文献

参考文献15

  • 1Gonzalo J. Comparative evaluation of multilingual information access systems//4th Workshop of the Cross-Language Evaluation Forum. Trondheim. Norway : Springer, 2004 : 1 - 6. 被引量:1
  • 2Chen J, Bao Y. Information access across languages on the Web: From search engines to digital libraries. [ 2010 - 04 - 01 ]. http ://max. lis. unt. edu/publications/2009_confpaper_asist, pdf. 被引量:1
  • 3Pastore E. The future of museums and libraries: A discussion guide. Washington: Institute of Museum and Library Services, 2009 : 15 - 20. 被引量:1
  • 4Hutchinson H B. The international children' s digital library: A case study in designing for a multi-lingual, multi-cultural, multigenerational audience. Information Technology and Libraries, 2005, 24(1) :4-13. 被引量:1
  • 5Sakai T. Overview of the NTCIR-7ACLIA IR4QA task. [2010 -04 -01 ]. http://research, nii. ac. jp/ntcir/workshop/OnlineProceedings7/pdf/NTCIR7/C1/IR4QA/01 -NTCIR7-OV-IR4QA-Sa- kaiT. pdf. 被引量:1
  • 6He D, Wu D. Exploring the future integration of machine translation in mnltilingual information access. [2010 -02 -06]. http:// www. isehools. org/iConference/o/progranr/. 被引量:1
  • 7Chen J, Bao Y. Cross-language search: The case of google language tools. First Monday, 2009, 14(3) :35 -42. 被引量:1
  • 8Yates S. Scaling the tower of babel fish: An analysis of the machine translation of legal information. Law Library Journal, 2006, 98(3) :481 -500. 被引量:1
  • 9LDC. Linguistic data annotation specification : Assessment of fluency and adequacy in translations revision 1.5. [ 2010 -01 -08 ]. http ://www. ldc. upenn. edu/-Projects/TIDES/Translation/TransAssess04. pdf. 被引量:1
  • 10孙连恒,杨莹,姚天顺.OpenE:一种基于n-gram共现的自动机器翻译评测方法[J].中文信息学报,2004,18(2):15-22. 被引量:8

二级参考文献6

  • 1[1]Kishore Papineni, et al. BLEU: a method for automatic evaluation of machine translation[R]. Technical Report RC22176 (W0109-022), IBM Research Division, Thomas J. Watson Research Center, 2001. 被引量:1
  • 2[2]Doddington. Automatic Evaluation of Machine Translation Quality Using N-gram Co-Occurrence Statistics [R]. NIST Research Report, 2002. 被引量:1
  • 3[3]Kjersti Aas, Line Eikvil. Text Categorisation: A Survey[M]. Raport NR 941. Norwegian Computing Center, 1999. 被引量:1
  • 4[4]E.H. Hovy. Toward finely differentiated evaluation metrics for machine translation[A]. In: Proceedings of the Eagles Workshop on Standards and Evaluation, Pisa, Italy, 1999. 被引量:1
  • 5[5]EAGLES. Evaluation of Natural Language Processing Systems FINAL REPORT[R]. EAGLES DOCUMENT EAG-II-EWG-PR.1, 1999. 被引量:1
  • 6[6]J.S. White, T. OConnell. The ARPA MT evaluation methodologies: evolution, lessons, and future approaches[A]. In: Proceedings of the First Conference of the Association for Machine Translation in the Americas, 193-205, Columbia, Maryland, 1994. 被引量:1

共引文献7

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部