期刊文献+

一种基于DE算法和NSGA-Ⅱ的多目标混合进化算法 被引量:12

A Hybrid Evolutionary Algorithm Used in Multi-Objective Optimization Problem Based on Differential Evolution Algorithm and NSGA-Ⅱ
下载PDF
导出
摘要 设计了一种新颖的基于差分进化算法和NSGA-Ⅱ的混合进化算法用来解决多目标优化问题。在此算法中,根据算法的搜索情况设计相应的自适应变异算子,以便在突变操作中找到Pareto解。同时,选择操作将基于NSGA-Ⅱ快速非优超排序和拥挤机制将父代与子代的双种群进行截短,确保最优解不会丢失并保证解的多样性。三个经典测试函数的仿真结果表明,文中算法在实现多目标优化问题的两个目标(获得收敛于真实Pareto前沿的解和解沿着前沿均匀扩展)方面表现出良好的综合性能。 A novel hybrid differential evolution algorithm for multi-objective optimization problem named DE-NSGAⅡ is proposed based on differential evolution and NSGA-Ⅱ.In DE-NSGAⅡ,the mutation operator parameter is adaptive for the searching effect in every generation to find Pareto solutions.The selective operator based on fast ranking mechanisms and crowing distance sorting of NSGA-Ⅱtruncates the population set formed by the parents and the new points to ensure the optimal solution not be lost and to ensure the diversity of optimal solution.DE-NSGAⅡ is implemented on three classical multi-objective optimization problems,and the results illustrate the good comprehensive performance of DE-NSGAⅡ in achieving two goals: they find the solutions converge to the true Pareto-front and uniform spread along the front.
作者 王林 陈璨
出处 《运筹与管理》 CSCD 北大核心 2010年第6期58-64,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70801030) 中央高校基本科研业务费专项资金项目(2010MS133)
关键词 运筹学 混合进化算法 自适应差分进化算法 NSGA-Ⅱ 多目标优化 仿真 operations research hybrid evolutionary algorithm adaptive differential evolution algorithm NSGA-Ⅱ multi-objective optimization simulation
  • 相关文献

参考文献15

  • 1陈小庆,侯中喜,郭良民,罗文彩.基于NSGA-II的改进多目标遗传算法[J].计算机应用,2006,26(10):2453-2456. 被引量:43
  • 2Kumar R,Izui K,Yoshimura M,Nishiwaki S.Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization[J].Reliability Engineering & System Safety,2009,94(4):891-904. 被引量:1
  • 3李中凯,谭建荣,冯毅雄,裘乐淼.基于强度Pareto进化的注塑机注射性能多目标优化[J].计算机集成制造系统,2007,13(11):2162-2168. 被引量:3
  • 4Chang P C,Hsieh J C,Wang C Y.Adaptive multi-objective genetic algorithms for scheduling of drilling operation in printed circuit board industry[J].Applied Soft Computing,2007,7 (3):800-806. 被引量:1
  • 5蔡龙飞.基于改进遗传算法的多目标问题的研究[J].计算机工程与科学,2008,30(3):75-77. 被引量:8
  • 6Knowles J,Corne D.The pareto archived evolution strategy:a new baseline algorithm for multiobjective optimization[A].Danvers,M A.Proceedings of the Congress on Evolutionary Computation[C].NY:IEEE Press,1999.98-105. 被引量:1
  • 7Shi C,Yan Z Y,Lü K V,Shi Z Z,Wang B.A dominance tree and its application in evolutionary multi-objective optimization[J].Information Sciences,2009,179(20):3540-3560. 被引量:1
  • 8童晶,赵明旺.高效求解Pareto最优前沿的多目标进化算法[J].计算机仿真,2009,26(6):216-219. 被引量:13
  • 9Xue F,Sanderson A C,Graves R J.Pareto-based multi-objective differential evolution[A].Sarker R,Reynolds R,Abbass H A.Proceedings of the 2003 Congress on Evolutionary Computation[C].NY:IEEE Press,2003.862-869. 被引量:1
  • 10Qian W Y,Li A J.Adaptive differential evolution algorithm for multiobjective optimization problems[J].Applied Mathematics & Computation,2008,201 (1-2):431-440. 被引量:1

二级参考文献62

共引文献129

同被引文献115

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部