期刊文献+

置换流水车间新工件到达干扰管理研究 被引量:1

Disruption Management for Permutation Flowshop Problem with New Orders Arrival
下载PDF
导出
摘要 在置换流水加工环境下,以最小化生产流程时间为目标制定的初始加工方案,由于新工件的到达变得不再最优或不可行,为了降低对原始加工方案的影响,在权衡生产成本和扰动成本的情况下,建立双目标重调度干扰管理模型,对初始最优方案进行调整。针对该模型的特点和问题复杂度,结合微粒群算法强大的全局搜索能力,以及非支配排序遗传算法(NSGA-Ⅱ)获得的Pareto解优良的综合性能,提出了一种混合微粒群算法来对问题求解。通过求解经典文献中置换流水车间双目标问题和随机生成的置换流水车间新工件到达问题,结果表明混合算法要优于NSGA-Ⅱ和多目标微粒群算法(MOPSO),同时验证了求解置换流水车间干扰管理问题的有效性。 In Permutation flowshop scheduling, the initial schedule is obtained via minimizing the makespan. A set of new arrival iobs make the initial schedule not optimal or feasible. Initial scheduling should be revised to trade off the original objective and deviation cost, and a hi-objective disruption management model is built up. Given the characteristics of the model and the complication of the problem, with concern of the Particle Swarm Algorithm with strong global search ability and the Pareto solutions with excellent comprehensive properties obtained by the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ ), we propose the Hybrid Particle Swarm Optimization algorithm (HPSO) to obtain the (ap- proximate) optimal solutions. By solving bi-objective flow shop problems in classic literatures and ran- domly generated flowshop problems with new arrival orders, the proposed HPSO outperforms NSGA-Ⅱ and MOPSO is verified as an effective approach to coping with disruptions.
出处 《石家庄铁道大学学报(自然科学版)》 2016年第1期86-92,共7页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 国家自然科学基金(71271039)
关键词 干扰管理 重调度 新工件到达 Pareto有效前沿 混合算法 disruption management rescheduling new orders arrival Pareto fronts hybrid algorithm
  • 相关文献

参考文献17

  • 1YENISEY M M, YAGMAHAN B. Multi-objective permutation flow shop scheduling problem: literature review, classi- fication and current trends[J]. Omega, 2014, 45: 119-135. 被引量:1
  • 2KATRAGJINI K, VALLADA E, RUIZ R. Flow shop reseheduling under different types of disruption[J]. International Journal of Production Research, 2013, 51(3): 780-797. 被引量:1
  • 3HALL NG, POTTS CN. Rescheduling for job unavailability[J]. Operations Research, 2010, 58(3): 746-755. 被引量:1
  • 4王杜娟,王建军,刘春来,王延章.具有恶化效应的新工件到达生产调度干扰管理[J].系统工程理论与实践,2015,35(2):368-380. 被引量:11
  • 5BEN ITAYEF A, LOUKIL T, TEGH[M J. Rescheduling a permutation flowshop problems under the arrival a new set of jobs[C]//39th International Conference on Computers and Industrial Engineering. France Troyes CEDEX, 2009 188-192. 被引量:1
  • 6刘锋,王征,王建军,杨德礼.加工能力受扰的可控排序干扰管理[J].系统管理学报,2013,22(4):505-512. 被引量:7
  • 7ZHAO Q, YUAN J. Pareto optimization of rescheduling with release dates to minimize makespan and total sequence dis- ruption[J]. Journal of Scheduling, 2013, 16(3): 253-260. 被引量:1
  • 8姜洋,孙伟,丁秋雷,张旭.考虑行为主体的单机调度干扰管理模型[J].机械工程学报,2013,49(14):191-198. 被引量:16
  • 9WANG S, WANG L, LIU M, et al. An effective estimation of distribution algorithm for solving the distributed permu- tation flow-shop scheduling problem[J]. International Journal of Production Economics, 2013, 145(1) : 387-396. 被引量:1
  • 10雷德明,严新平著..多目标智能优化算法及其应用[M].北京:科学出版社,2009:389.

二级参考文献71

  • 1赵传立,张庆灵,唐恒永.具有线性恶化加工时间的调度问题(英文)[J].自动化学报,2003,29(4):531-535. 被引量:17
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3陈小庆,侯中喜,郭良民,罗文彩.基于NSGA-II的改进多目标遗传算法[J].计算机应用,2006,26(10):2453-2456. 被引量:43
  • 4曾建敏.实验检验累积前景理论[J].暨南大学学报(自然科学与医学版),2007,28(1):44-47. 被引量:58
  • 5Kumar R,Izui K,Yoshimura M,Nishiwaki S.Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization[J].Reliability Engineering & System Safety,2009,94(4):891-904. 被引量:1
  • 6Chang P C,Hsieh J C,Wang C Y.Adaptive multi-objective genetic algorithms for scheduling of drilling operation in printed circuit board industry[J].Applied Soft Computing,2007,7 (3):800-806. 被引量:1
  • 7Knowles J,Corne D.The pareto archived evolution strategy:a new baseline algorithm for multiobjective optimization[A].Danvers,M A.Proceedings of the Congress on Evolutionary Computation[C].NY:IEEE Press,1999.98-105. 被引量:1
  • 8Shi C,Yan Z Y,Lü K V,Shi Z Z,Wang B.A dominance tree and its application in evolutionary multi-objective optimization[J].Information Sciences,2009,179(20):3540-3560. 被引量:1
  • 9Xue F,Sanderson A C,Graves R J.Pareto-based multi-objective differential evolution[A].Sarker R,Reynolds R,Abbass H A.Proceedings of the 2003 Congress on Evolutionary Computation[C].NY:IEEE Press,2003.862-869. 被引量:1
  • 10Qian W Y,Li A J.Adaptive differential evolution algorithm for multiobjective optimization problems[J].Applied Mathematics & Computation,2008,201 (1-2):431-440. 被引量:1

共引文献40

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部