期刊文献+

一类带扩散的两种群捕食模型的稳定性 被引量:3

Stability of a Diffusive Predator-Prey Model
下载PDF
导出
摘要 建立了一个有避难所、毒素作用和外界收获影响的捕食者—食饵扩散模型,讨论了该模型解的一致有界性,应用线性化和谱分析的方法讨论了该模型平衡点的局部稳定性,通过构造适当的Lyapunov泛函讨论了正平衡点的全局渐近稳定性. A predator-prey diffusion system with refuge and toxicity is studied.The uniform boundedness of solution is investigated.The sufficient conditions of local asymptotic stability of equilibriums are showed by applying linearization method and spectral analysis.The global asymptotical stability of the positive equilibrium is also studied by constructing a suitable Lyapunov function.
作者 唐秋林 周鹏
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期20-24,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 江苏省自然科学基金资助项目(BK2006064)
关键词 捕食模型 扩散 避难所 稳定性 predator-prey model diffusion refuge stability
  • 相关文献

参考文献13

  • 1Das T,Mukherjee R N,Chaudhuri K S.Harvesting of Prey-Predator Fishery in the Presence of Toxicity[J].Applied Mathematical Modelling,2009(33):2282-2292. 被引量:1
  • 2Kar T K.Stability Analysis of a Prey-Predator Model Incoporating a Prey Refuge[J].Communication in Nonlinear Science and Numerical Simulation,2005(10):681-691. 被引量:1
  • 3Hausrath A.Analysis of a Model Prey-Predator System with Refuges[J].Journal of Mathematical Analysis and Applications,1994(181):531-545. 被引量:1
  • 4Huang Yunjin,Chen Fende,Zhong Li.Stability Analysis of a Prey-Predator Mode with Holling Type Ⅲ Response Function Incorporating a Prey Refuge[J].Applied Mathematics and Computation,2006(182):672-683. 被引量:1
  • 5伍慧玲.具避难所和毒素作用的捕食系统动力学行为[J].扬州大学学报(自然科学版),2009,12(4):10-13. 被引量:1
  • 6Pao C V.Dynamics of Nonlinear Parabolic Systems with Time Delay[J].Journal of Mathematical Analysis and Applications,1996(198):751-779. 被引量:1
  • 7Pang P Y H,Wang Mingxin.Strategy and Stationary Pattern in a Three-Species Predator-Prey Model[J].Journal of Differential Equations,2004(200):245-273. 被引量:1
  • 8Henry D.Geometric Theory of Semilinear Parabolic Equations(Lecture Notes in Mathematics)[M].Berlin:SpringerVerlag,1993. 被引量:1
  • 9王明新著..非线性抛物型方程[M].北京:科学出版社,1993:308.
  • 10Brown K J,Dunne P C,Gardner R A.A Semilinear Parabolic System Arising in the Theory of Superconductivity[J].Journal of Differential Equations,1981(40):232-252. 被引量:1

二级参考文献13

  • 1CHEN Liu-juan, CHEN Feng-de, CHEN Li-juan, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge [J]. Nonlinear Anal: Real World Appl, 2010, 11(1) : 246-252. 被引量:1
  • 2KAR T K. Stability analysis of a prey-predator model incorporating a prey refuge [J]. Commun Nonlinear Sci Numer Simul, 2005, 10(6).. 681-691. 被引量:1
  • 3HUANG Yun-jin, CHEN Feng-de, ZHONG Li. Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating a prey refuge [J]. Appl Math Comput, 2006, 182(1): 672-683. 被引量:1
  • 4CHEN Feng-de, CHEN Liu-juan, XIE Xiang-dong. On a Leslie-Gower predator-prey model incorporating a prey refuge [J]. Nonlinear Anal: Real World Appl, 2009, 10(5) : 2905-2908. 被引量:1
  • 5KAR T K. Modelling and analysis of a harvested prey-predator system incorporating a prey refuge [J]. J Comput Appl Math, 2006, 185(1): 19-33. 被引量:1
  • 6DAS T, MUKHERJEE R N, CHAUDHURI K S. Harvesting of a prey-predator fishery in the presence of toxicity [J]. Appl Math Model, 2009, 33(5) : 2282-2292. 被引量:1
  • 7KAR T K, CHAUDHURI K S. On non-selective harvesting of two competing fish species in the presence of toxicity [J]. Ecol Model, 2003, 161(1/2): 125-137. 被引量:1
  • 8SAHA T, BANDYOPADHYAY M. Dynamical analysis of toxin producing Phytoplankton-Zooplankton interactions [J]. Nonlinear Anal: Real World Appl, 2009, 10(1): 314-322. 被引量:1
  • 9王开发.微生物培养模型的一致持续生存与周期解[J].西南师范大学学报(自然科学版),1997,22(6):591-598. 被引量:8
  • 10侯强,靳祯.基于比率且包含食饵避难的Holling-Tanner模型分析[J].山东大学学报(理学版),2009,44(3):56-60. 被引量:5

共引文献5

同被引文献15

  • 1Changjin Xu1,2,Maoxin Liao2(1. School of Math. and Statistics,Guizhou Key Laboratory of Economics System Simulation,Guizhou College of Finance and Economics,Guiyang 550004,2. Dept. of Math.,Central South University,Changsha 410083).EXISTENCE OF POSITIVE PERIODIC SOLUTIONS TO A DISCRETE TIME NON-AUTONOMOUS COMPETING SYSTEM WITH FEEDBACK CONTROLS[J].Annals of Differential Equations,2011,27(1):62-69. 被引量:1
  • 2柏灵,范猛,王克.离散时间的互惠系统的正周期解的存在性[J].生物数学学报,2004,19(3):271-279. 被引量:11
  • 3苟清明,王稳地.一类有迁移的传染病模型的稳定性[J].西南师范大学学报(自然科学版),2006,31(1):18-23. 被引量:6
  • 4刘继云,李红.基于复杂网络的证券投资行为扩散研究[J].企业经齐,2007,327(2). 被引量:1
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization[C].Proceed- ings of IEEE International Conference on Neural Networks, Piscat- away NJ: IEEE,1995. 被引量:1
  • 6Kennedy J. The Particle Swarm: Social Adaptation of Knowledge[C]. Proceedings of Ieee International Conference on Evolutionary Compu- tation, Indianapolis: IEEE, 1997. 被引量:1
  • 7WANG X R, RAO R F. Robust Stability of Probabilistic Delays Fuzzy Stochastic P-Laplace Dynamic Equations [J]. Journal of Inequalities and Applications, 2014, 469(1) : 1-8. 被引量:1
  • 8RAO R F, PU Z L. Stability Analysis for Impulsive Stochastic Fuzzy P-Laplace Dynamic Equations under Neumann or Dirichlet Boundary Condition [J]. Boundary Value Problems 2013, 2013 133. 被引量:1
  • 9PAN J, ZHONG S M. Dynamic Analysis of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with De- lays [J]. Advances in Difference Equations, 2009, 2009 : 1-18. 被引量:1
  • 10WANG X H, GUO Q Y, XU D Y. Exponential P-Stability of Impulsive Stochastic Cohen-Grossberg Neural Networks with Mixed Delays [J]. Mathematics and Computers in Simulation, 2009, 79: 1698-1710. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部