摘要
构建了Holling-II型三种群食物网模型,利用Jacobian矩阵、 Routh-Hurwitz判据、 Hopf分岔和中心流形等理论分别讨论了系统的局部渐进稳定性和Hopf分岔的发生条件.通过数值模拟,展示了食物网系统的Hopf分岔行为,揭示了种群动态随外界参数条件的变化以及随时间演化的分布规律.
We investigated a three-species food web model with Holling-II functional response. Jacobian matrix, Routh-Hurwitz criteria, Hopf bifurcation theorem and central manifold theorem were used to analyze local asymptotic stability and to determine Hopf bifurcation condition for the food web system. The Hopf bifurcation of the system was demonstrated by numerical simulations. The dynamics behaviors revealed change of population dynamics with variations of the parameters as well as time evolution.
作者
康举
黄头生
孟天祥
张化永
KANG Ju;HUANG Tou-sheng;MENG Tian-xiang;ZHANG Hua-yong(Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第5期64-71,共8页
Journal of Southwest University(Natural Science Edition)
基金
国家"十三五"重大科技专项(2017ZX07101-002)
中央高校基本科研业务费专项(JB2017069)
关键词
食物网模型
局部渐进稳定性
HOPF分岔
数值模拟
food web model
local asymptotic stability
Hopf bifurcation
numerical simulations