摘要
脉冲微分方程理论作为数学中一个新的理论分支已得广泛的应用。但是当脉冲项Δx|t=t1与Δx′|t=t1的两个算子不同时,对其解的存在的必要条件的研究还不多见。给出了关于f(t,x)的两个不等式,结合积分方法,研究了一类含脉冲的次线性奇异微分方程边值问题正解存在的必要条件。
As the mathematical theory of impulsive differential equation of a new theoretical branch has a wide application.But when the two operators of Δx-t=t1 and Δx'-t=t1 are not the same time,the necessary conditions for the existence of positive solution of research are rare.Combining integral method to present the necessary conditions for the existence of positive solution of singular two-point boundary value problem for second-order impulsive sublinear differential equation is mainly about the two inequalities given。
出处
《科学技术与工程》
2010年第35期8657-8658,共2页
Science Technology and Engineering
基金
国家自然科学基金项目(10871120)
山东省教育厅基金(J07WH08)资助
关键词
微分方程边值问题
次线性
正解
脉冲
boundary value problems sublinearity positive solution impulsive