摘要
讨论了二阶次线性微分方程 (g(x(t) )x′(t) )′ +a(t)f(x(t) ) =0 ,(g(x(t) )x′(t) )′ +a(t)f(x(t) ) +q(t)x′(t) =0的振动性 ,及次线性微分方程 (g(x(t) )x(t)′)′+a(t)f(x(t) ) =b(t) ,b(t)∈c[t0 ,∞ )解的渐近性 ,所得结果进一步改进了前人的有关结果 .
The osillatory properties of second order sublinear differentia l equations (g(x(t))x′(t))′+ a(t)f(x(t)) =0, and (g(x(t))x′(t))′+ a(t)f(x(t)) +q(t)x ′(t)=0 are investigated. The results obtained generalize some of previous one s.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2003年第4期27-30,共4页
Journal of Qufu Normal University(Natural Science)