期刊文献+

带有临界指数的拟线性椭圆障碍问题的正解的非存在性(英文) 被引量:1

Nonexistence of Positive Solutions to Quasilinear Elliptic Obstacle Problems with Critical Exponents
下载PDF
导出
摘要 讨论障碍函数ψ和参量λ对带有临界增长条件的拟线性椭圆障碍问题的正解的存在或不存在性的作用,得到了几个保证障碍问题的正解存在的必要条件. The object of this paper is to discuss the function of the obstacle function ψ and parameter λ for existence or nonexistence of positive solutions to the quasilinear elliptic obstacle problem under critical Sobolev growth condition. Several necessary conditions to ensure the existence of positive solutions to obstacle problem are obtained.
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2006年第2期130-131,136,共3页 Journal of Ningxia University(Natural Science Edition)
基金 SupportedbyNationalScienceFoundationofChina(10471039) SupportedbyScienceFoundationofHebeiUniversity SupportedbyNaturalScienceFoundationofZhejiang(M103087)
关键词 障碍问题 临界指数 正解 存在 不存在 obstacle problem critical exponent positive solution existence nonexistence
  • 相关文献

参考文献16

  • 1EBOBISSE F, AHMEDOU M O. On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent[J]. Nonlinear Anal TMA,2003,52(5):1535-1552. 被引量:1
  • 2VELIN J. Existence results for some nonlinear elliptic system with lack of compactness[J]. Nonlinear Anal TMA,2003,52 (3):1017-1034. 被引量:1
  • 3ALVES C O. Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian [J].Nonlinear Anal TMA,2002,51 (7) : 1187-1206. 被引量:1
  • 4GARCIA A J P, PERAL A I. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues[J]. Commun In P D E,1987,12(12):1389-1430. 被引量:1
  • 5BREZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents[J].Comm Pure App Math,1983,36:437-477. 被引量:1
  • 6KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications [M]. New York: Academic Press, 1980. 被引量:1
  • 7HEINONEN J, KILPELAINEN T, MARTIO O. Nonlinear potential theory of degenerate elliptic equations[M]. Oxford:Clarendon Press, 1993. 被引量:1
  • 8SZULKIN A. Positive solutions of variational inequalities:a degree-theoretic approach[J]. J Differential Equations,1985,57: 90-111. 被引量:1
  • 9BENCI V. Positive solutions of some eigenvalue problems in the theory of variational inequalities [J]. J Math Anal Appl,1977,61:165-187. 被引量:1
  • 10LE V K. Subsolution-supersolution method in variational inequalities[J]. Nonlinear Anal TMA, 2001,45(6):775-800. 被引量:1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部