期刊文献+

基于支持向量机的粒子群神经网络集成股市预测模型 被引量:3

Forecasting Model of the Stock Market Based on Support Vector Machine Evolving Particle Swarm Optimization Neural Network Ensembles
原文传递
导出
摘要 为有效提高神经网络集成的泛化能力,先利用量子粒子群和主成分分析提高集成个体的泛化能力,再利用泛化能力强的支持向量机回归集成生成输出结论,建立一个基于支持向量机的粒子群神经网络集成股市预测模型.试验表明,该模型能有效提高神经网络集成系统的泛化能力,预测精度高,稳定性好. A forecasting model of the stock market was put forward using particle swarm optimization neural network ensemble based on support vector machine in this paper.The model effectively improved the generalization ability of neural network ensembles.The generalization ability of individuals was first improved using quantum particle swarm optimization and principal component analysis.Then conclusions were generated and output using support vector machine regression highly generalized.Tests showed that the model had advantages of high accuracy,good stability and can effectively improve the generalization ability of the neural network ensemble system.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第22期33-40,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(10761001) 广西教育厅面上项目(200707MS061)
关键词 量子粒子群 支持向量机 神经网络集成 主成分分析 〈Keyword〉quantum behaved particle swarm optimization support vector machine neural network ensembles principal component analysis
  • 相关文献

参考文献10

  • 1Lapedes.An infoumation criterion for optimal neural networks election[J].IEEE Trans Neural Networks,1987,2(6):490-497. 被引量:1
  • 2Hansen L K,Salamon P.Neural Networks ensembles[J].IEEE Trans Pattern Analysis and Machine intelligence,1990,12(10):993-1001. 被引量:1
  • 3Haris,Abdullahetc.Neural Networks Ensemble for financial trend prediction[J].TENCON 2000,Proceedings,2000,3:157-161. 被引量:1
  • 4吴成东,王长涛.人工神经元BP网络在股市预测方面的应用[J].控制工程,2002,9(3):48-50. 被引量:13
  • 5Zhou Z H,Wu J,Tang W.Ensembling neural networks:Many could be better than all[J].Artificial Intelligence,2002,137:239-263. 被引量:1
  • 6SimonHaykin著 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004.. 被引量:19
  • 7Sollich P,Krogh A.Learning with ensembles:How over-fitting can be useful[C] //Touretaky D,Mozer M,Hasselmo Meds,Aduances in Neural infoumation Processing Systems 8,Cambridge,MA:Mit press,1996,190-196. 被引量:1
  • 8Sun J,Xu W B.A Global search strategy of Quantum-Be-haved particle swarm optimization[C] //Singapore:Pro-ceedings of IEEE Conference on Cybernetics and Intelligent Systems,2004:111-116. 被引量:1
  • 9Vapnik V N.The Nature of statistical Learning Theory[M].New York:Springer Verlag,1995. 被引量:1
  • 10汪灵枝,吴建生,吴春梅.偏最小二乘回归的贝叶斯正则化神经网络集成模型在证券分析预测中的应用[J].数学的实践与认识,2007,37(14):197-205. 被引量:4

二级参考文献25

  • 1臧玉卫,张慎峰,吴育华.中国股票市场的非线性分析[J].天津大学学报(社会科学版),2005,7(6):417-420. 被引量:12
  • 2Martin Hagan T,Howard Demuth B,Mark Beale H.神经网络设计[M].戴葵译.北京:机械工业出版社,2002. 被引量:5
  • 3Bernd Freisleben. Stock Market Prediction with Backprogagation Networks 604[C]. IEAAIES'92,1992. 被引量:1
  • 4S.Dutta,S.Shekkar. Bond Rating:A Non-conservative Application of Neural Networks[C]. International Joint Conference on Neural Networks, 1988. 被引量:1
  • 5Gosh.E.A.Collins. Prediction of Mortgage Loan Performance with a Multiple Neural Network Learning System[R]. Abstracts of the First Annual INNS Meeting.1988. 被引量:1
  • 6Leja.Prediction of Stock Prices with Neural Networks(in German)[C]. Master′s Thesis.Dept.of Computer Science,University of Darmstadt.1991. 被引量:1
  • 7Schomeburg.Stock Price Predicition Using Neural Networks[J]. An Empirical Test.Neurocomputing,1991,2(1):34-38. 被引量:1
  • 8Sarda and R.B.Patil.Neural Networks as Forecasting Experts:An empirical Test[C]. International Joint Conference on Neural Networks.Washington.D.C,1990. 被引量:1
  • 9SIMon HYKIN.神经网络原理[M].叶世伟,史忠植译.北京:机械工业出版社,2004. 被引量:74
  • 10Guoqiang P Z. An investigation of neural network for linear time-series forecasting[J]. Computers & Operations Research, 2001,28 : 1183-1202. 被引量:1

共引文献32

同被引文献13

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部