期刊文献+

传感器测量偏差下的航空发动机智能性能诊断 被引量:3

Intelligent performance diagnosis of aeroengine with sensor measurement bias
下载PDF
导出
摘要 以某型涡扇发动机为研究对象,构建了基于神经网络的航空发动机智能性能诊断方法,讨论了测量噪声及测量偏差对诊断结果的影响及其处理方法.建立一簇并行的神经网络组和发动机模型,通过比较各模型输出与发动机测量参数之间的误差,判断传感器是否存在测量偏差.仿真结果表明,该方法能有效消除测量噪声,准确判断并隔离有测量偏差的传感器,得出正确的发动机性能诊断结果. An Intelligent aeroengine performance diagnostic method, based on neural networks, was investigated. Sensor measurement deviations from the nominal condition are the only information for the estimation of engine health parameters. They are often distorted by noise and bias, thereby mask the true engine condition and lead to incorrect diagnostic resuits. A bank of neural networks and engine models was developed. The errors between the model outputs and sensor measurements can be used to detect and isolate the sensor, which has measurement bias. Then the engine performance can be estimated by the set of measurements without biases. The simulation results show that this approach is promising for reliable aero-engine diagnosis.
作者 袁春飞 姚华
出处 《航空动力学报》 EI CAS CSCD 北大核心 2007年第1期126-131,共6页 Journal of Aerospace Power
基金 江苏省博士后科研资助计划项目
关键词 航空、航天推进系统 性能诊断 神经网络 消噪 aerospace propulsion system performance diagnosis neural networks noise elimination
  • 相关文献

参考文献11

  • 1Kobayashi T, Simon D L. A Hybrid neural network-genetic algorithm technique for aircraft engine performance diagnostics[R], AIAA 2001-3763, 37th AIAA/ SAE/ASME/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, Utah, July 8-11, 2001. 被引量:1
  • 2Kobeyashi T, Simon D L. Application of a bank of kalman filters for aircraft engine fault diagnostics[R]. NASA/TM-2003-212526. 被引量:1
  • 3陈恬,孙健国,杨蔚华,秦海波,卓刚.自组织神经网络航空发动机气路故障诊断[J].航空学报,2003,24(1):46-48. 被引量:25
  • 4郝英,孙健国,白杰.航空燃气涡轮发动机气路故障诊断现状与展望[J].航空动力学报,2003,18(6):753-760. 被引量:43
  • 5Diakunchak I S. Performance deterioration in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(2): 161-168. 被引量:1
  • 6Luppold R H, Roman J R, Gallops G W,et al. Estimating in-flight performance variations using kalman filter concepts[R]. AIAA-89 2584, AIAA/ SAE/ASME/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10-121989. 被引量:1
  • 7Gilyard G, Orme J. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15airplane[R],AIAA 92-3743, AIAA/SAE/ ASME/ASEE 28th Joint Propulsion Conference and Exhibit , July 6-8, 1992/Nash-ville , TN. 被引量:1
  • 8Maine T, Gilyard G, Lambert H. A preliminary evaluation of a F100engine parameter estimation process using flight data[R]. AIAA-90-1921. AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Orlando, FL, July 16-18,1990. 被引量:1
  • 9Lietzau K, Kreiner A. Model based control concepts for jet engines[A]. Proceedings of ASME TURBO EXPO 2001[C]. New Orleans, Louisiana, USA. June 4-7, 2001. 被引量:1
  • 10SimonHaykin著 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004.. 被引量:19

二级参考文献18

共引文献78

同被引文献35

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部