期刊文献+

一种改进的粒子群优化算法 被引量:5

A modified particle swarm optimization algorithm
下载PDF
导出
摘要 粒子群优化算法是一种基于仿生技术的启发式算法,针对粒子群优化算法存在易早熟现象,提出一种改进的粒子群优化算法.该算法给出了一种新的变异算子,该算子具有一定探索和开发能力,从而避免算法陷入局部最优.基于新变异算子给出一个新的粒子位置更新公式.根据系统稳定性理论,推出了算法的参数设置区域.最后,通过标准测试函数的性能测试,验证了改进粒子群优化算法收敛速度和求解精度.实验结果表明,该算法具有较好的收敛速度和求解精度. Particle swarm optimization algorithm (PSO) is a heuristic algorithm based on bionic technology, To solve the premature convergence problem of the Particle Swarm Optimization, a modified PSO algorithm was proposed. In this algorithm, A new mutation operator with the exploration and exploitation ability is proposed to avoid falling into local optimal solutions. Based on the new mutation operator, a new updating formula of particle position is proposed. According to the system stability theory, the area of parameters of the modified algorithm is given. Finally, A performance test of benchmark functions is taken to confirm convergence speed and solution precision of the modified algorithm. The experimental results show that the modified algorithm has faster convergence speed and higher solution precision.
作者 钱伟懿 张洵
出处 《渤海大学学报(自然科学版)》 CAS 2017年第2期97-103,共7页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金项目(No:11371071)
关键词 粒子群优化算法 变异算子 稳定性 函数优化 particle swarm optimization algorithm mutation operator stability function optimization
  • 相关文献

参考文献4

二级参考文献38

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory [C]// Proceedings of the 6th International Symposium on Micro Machine and Hunan Science, Nagoya, Japan. USA: IEEE Robotics and Automation Society, 1995: 39-43. 被引量:1
  • 3Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, USA: IEEE, 1998: 69-73. 被引量:1
  • 4Chen X, Li Y M. A Modified PSO Structure Resulting in High Exploration Ability with Convergence Guaranteed [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (S1083-4419), 2007, 37(5): 1271-1289. 被引量:1
  • 5Jun S, Lai C H, Xu W B. A Novel and More Efficient Search Strategy of Quantum-behaved Particle Swarm Optimization [C]// Proceedings of the 8th International Conference on Adaptive and Natural Computing Algorithms. Poland: Springer-Verlag Berlin, Heidelberg, 2007: 394-403. 被引量:1
  • 6Nayan R Samal, Amit Konar, Swagatam Das. A Closed Loop Stability Analysis and Parameter Selection of the Particle Swarm Optimization Dynamics for Faster Convergence [C]// Evolutionary Computation IEEE Congress. USA: IEEE, 2007, (25): 1769-1776. 被引量:1
  • 7Lin C, Feng Q Y. The Standard Particle Swarm Optimization Algorithm Convergence Analysis and Parameter Selection [C]// Proceedings of the 3th International Conference on Natural Computation. USA: IEEE Computer Society, 2007: 823-826. 被引量:1
  • 8Jiang M, Luo Y P, Yang S Y. Stochastic Convergence Analysis and Parameter Selection of the Standard Particle Swarm Optimization Algorithm [J]. Information Processing Letters (S0020-0190), 2007, 102(1): 8-16. 被引量:1
  • 9Lin W X, Jiang C G, Qian J X. The Identification of Hammerstein Model Based on PSO with Fuzzy Adaptive Inertia Weight [J]. Journal of Systems Science and Information (S1478-9906), 2005, 3(2): 381-391. 被引量:1
  • 10Vesterstrom J, Thomsen R. A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems [C]// Proceedings of the 2004 Congress on Evolutionary Computation. USA: IEEE, 2004, 2: 1980-1987. 被引量:1

共引文献45

同被引文献26

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部