期刊文献+

小波阈值去噪和FAR建模结合的MEMS陀螺数据处理方法 被引量:5

A combined method for MEMS gyroscope data processing based on wavelet thresholding denoising and FAR modeling
下载PDF
导出
摘要 为解决MEMS陀螺输出信号中噪声大、随机漂移严重的问题,提出了一种小波阈值去噪和函数系数自回归FAR建模结合的MEMS陀螺数据处理方法。采用小波阈值去噪法对MEMS陀螺输出信号去噪,提高其信噪比;为克服常用的自回归AR模型无法解决MEMS陀螺随机漂移存在的非线性问题,引入FAR模型对MEMS陀螺的随机漂移进行建模。实验结果表明,此数据处理方法可有效抑制MEMS陀螺输出噪声,且与AR模型相比,FAR模型能更精确地对MEMS陀螺随机漂移进行建模及预测。 To solve the problem that the outputs of MEMS gyroscope contain high noise and serious random drift ,a combined method for MEMS gyroscope data progressing based on wavelet thresholding denoising and FAR modeling is presented. Firstly, wavelet thresholding denoising is used to denoise and improve the signal-to-noise ratio of MEMS gyroscope output. As AR model couldn't solve the nonlinear problem of MEMS gyroscope random drift, FAR model is introduced to model MEMS gyroscope random drift. Experiments show that the proposed method could effectively suppress noise, and FAR could more accurately model and predict the random drift of MEMS gyroscope when compared to AR model.
出处 《电子技术应用》 北大核心 2010年第12期120-123,共4页 Application of Electronic Technique
关键词 MEMS陀螺 随机噪声 随机漂移 小波闲值去噪 FAR模型 MEMS gyroscope random noise random drift wavelet thresholding denoising FAR model
  • 相关文献

参考文献12

  • 1PARK M. Error analysis and stochastic modeling of MEMS-based inertial sensors for land vehicle navigation applications [ D ]. Canada: CALARY,2004:31- 83. 被引量:1
  • 2MOHAMMED E D, PAGIATAKI S. Calibration and stochastic modelling of inertial navigation sensor errors[J] Journal of Global Po-sitioning Systems, 2008,7(2):170- 182. 被引量:1
  • 3宋丽君,秦永元,杨鹏翔.小波阈值去噪法在MEMS陀螺仪信号降噪中的应用[J].测试技术学报,2009,23(1):33-36. 被引量:25
  • 4NASSAR S. Improving the inertial navigation system (INS) error model for INS and INS-DGPS applications[D].CALGARY, 2003 : 32- 82. 被引量:1
  • 5吕永乐..机载设备工作性能预测建模方法及其应用[D].北京航空航天大学,2009:
  • 6高志,,余啸海编著..Matlab小波分析与应用[M],2007:281页.
  • 7CAI Tie, WU Xing. Wavelet-based denoising of speech using adaptive decomposition[C]. Industrial Technology, 2008 IEEE International Conference on 21-24 April 2008 1-5. 被引量:1
  • 8蔡铁,朱杰.小波阈值降噪算法中最优分解层数的自适应选择[J].控制与决策,2006,21(2):217-220. 被引量:44
  • 9吴怀宇..时间序列分析与综合[M],2004.
  • 10NOURELDIN A, EBERTS M D.Perrformance enhancement of MEMS Based INS-GPS integration for low cost navigation Applications[J].IEEE Transactions on Vehicular Technology, V-L.2009,58(3). 被引量:1

二级参考文献26

  • 1吉训生,王寿荣.小波变换在MEMS陀螺仪去噪声中的应用[J].传感技术学报,2006,19(1):150-152. 被引量:18
  • 2王少锋,王海斌,蔡俊娟.一类非参数的ARMA模型[J].厦门大学学报(自然科学版),2006,45(5):628-633. 被引量:4
  • 3Seok J W,Bae K S.Speech Enhancement with Reduction of Noise Components in the Wavelet Domain[A].Proc of the ICASSP[C].Munich,1997,2:1323-1326. 被引量:1
  • 4Lu C T,Wang H C.Enhancement of Single Channel Speech Based on Masking Property and Wavelet Transform[J].Speech Communication,2003,41(2-3):409-427. 被引量:1
  • 5Medina C A,Aleaim A,Apolinario J A.Wavelet De-noising of Speech Using Neural Networks for Threshold Selection[J].Electronics Letters,2003,39(25):1869-1871. 被引量:1
  • 6Mallat S G,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002:340-358. 被引量:5
  • 7Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627. 被引量:1
  • 8Zhang X P,Desai M T.Adaptive De-noising Based on SURE Risk[J].IEEE Signal Processing Letters,1998,5(10):265-267. 被引量:1
  • 9Vautard R,Yiou P,Ghil M.Singular-spectrum Analysis:A Toolkit for Short Noisy Chaotic Signals[J].Physica D,1992,58(1-4):95-126. 被引量:1
  • 10Alexandros Leontitsis,Tassos Bountis,Jenny Pagge.An Adaptive Way for Improving Noise Reduction Using Local Geometric Projection[J].Chaos,2004,14(1):106-110. 被引量:1

共引文献68

同被引文献39

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部