期刊文献+

小波收缩语音增强中的小波基选择方法 被引量:1

Wavelet Basis Selection for Speech Enhancement
下载PDF
导出
摘要 要对染噪语音进行小波收缩以实现语音增强,首先需要考虑的问题就是小波分解中小波基的选择。工程人员一般按照经验选择小波基,并在相同应用目的中,使用相同的小波基,这种做法不利于小波收缩效果和稳健性。提出了一种基于消噪前后语音信号相异性的方法,在只有染噪信号的实际条件下,这种方法能自适应地选择出最佳小波基。试验结果证明,针对性地选择小波基有利于语音增强效果的提高。 In the implementation of wavelet shirnkage to speech enhancement, the first thing is to choose wavelet basis in wavelet decomposition. Usually, researchers choose wavelet basis according to their personal experiences and use the same basis for various application, which is adverse to speech enhancement. A new method to select best basis with only noisy speech possible is proposed, in which the dissimilarity between noisy and denoised signals is estimated. Simulation results show that the proposed method can find proper basis for speech enhancement, and thus bring better performance.
出处 《电声技术》 2008年第12期58-61,65,共5页 Audio Engineering
关键词 语音增强 小波收缩 小波基选择 信号相异性 speech enhancement wavelet shrinkage wavelet basis selection signal dissimilarity
  • 相关文献

参考文献13

  • 1DONOHO D L. De-noising by soft-thresholding[J]. IEEE Trans. on Inf. Theory,1995,41(3):613-627. 被引量:1
  • 2蔡铁,朱杰.小波阈值降噪算法中最优分解层数的自适应选择[J].控制与决策,2006,21(2):217-220. 被引量:44
  • 3BAHOURA M,ROUAT J. Wavelet speech enhancement based on time-scale adaptation[J]. Speech Communica- tion,2006,48(12):1620-1637. 被引量:1
  • 4AYAT S, MANZURI M, DIANAT R. An improved wavelet-based speech enhancement by using speech signal features [J]. Computers & Electrical Engineering,2006,32 (6) :411 - 425. 被引量:1
  • 5MALLAT S W. Singularity detection and processing with wavelets[J]. IEEE Trans. on Inform. Theory,1992,38(2): 617-643. 被引量:1
  • 6DENDA Yuki, NISHIURA Takanobu, KAWAHARA Hideki, et al. Speech recognition with wavelet spectral subtrac- tion in real noisy environment [C]// Proceedings of 7th International Conference on Signal Processing. Beijing: IEEE Press,2004,3: 638-641. 被引量:1
  • 7CHANG Sungwook, KWON Y, YANG Sungil, et al. Speech enhancement for non-stationary noise environment by adaptive wavelet packet[C]// Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing. Orlando : IEEE Press, 2002,1 : 561-564. 被引量:1
  • 8GAO H-Y. Wavelet shrinkage denoising using the nonnegative garrote[J]. J. Comput. Graph. Statist,1998,7(4)- 469-488. 被引量:1
  • 9JOHNSTONE I M, SILVERMAN B W. Wavelet threshold estimators for data with correlated noise[J]. Journal of the Royal Statistical Society, 1997,59 : 319-351. 被引量:1
  • 10QIU Zheng-ding, DERVAI Farzin. A new wavelet feature for wavelet basis selection in wavelet-fractal hy- brid image coding[C]// Proceedings of International Conference on Signal Processing. Beijing: IEEE Press, 2000, 2:1054-1057. 被引量:1

二级参考文献88

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151
  • 2Seok J W,Bae K S.Speech Enhancement with Reduction of Noise Components in the Wavelet Domain[A].Proc of the ICASSP[C].Munich,1997,2:1323-1326. 被引量:1
  • 3Lu C T,Wang H C.Enhancement of Single Channel Speech Based on Masking Property and Wavelet Transform[J].Speech Communication,2003,41(2-3):409-427. 被引量:1
  • 4Medina C A,Aleaim A,Apolinario J A.Wavelet De-noising of Speech Using Neural Networks for Threshold Selection[J].Electronics Letters,2003,39(25):1869-1871. 被引量:1
  • 5Mallat S G,杨力华.信号处理的小波导引[M].北京:机械工业出版社,2002:340-358. 被引量:5
  • 6Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627. 被引量:1
  • 7Zhang X P,Desai M T.Adaptive De-noising Based on SURE Risk[J].IEEE Signal Processing Letters,1998,5(10):265-267. 被引量:1
  • 8Vautard R,Yiou P,Ghil M.Singular-spectrum Analysis:A Toolkit for Short Noisy Chaotic Signals[J].Physica D,1992,58(1-4):95-126. 被引量:1
  • 9Alexandros Leontitsis,Tassos Bountis,Jenny Pagge.An Adaptive Way for Improving Noise Reduction Using Local Geometric Projection[J].Chaos,2004,14(1):106-110. 被引量:1
  • 10Simon Hyaline The wavelet Transform: A method for time - frequency localization[C]. Advances in Spectrum Analysis and Array Processing,1991. 被引量:1

共引文献172

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部