期刊文献+

基于SIFT特征匹配的电力设备外观异常检测方法 被引量:3

Research on Abnormal Appearance Detection Approach of Electric Power Equipment
下载PDF
导出
摘要 基于电力设备巡检机器人平台,提出了一种电力设备外观异常检测方法。该方法使用SIFT特征点提取算法,进行特征匹配,使用基于RANSAC的方法求解单应矩阵进行配准。在经过配准后,对像素的差值使用Mean Shift分割算法提取异常区域。实验证明该方法对于光照有较高的鲁棒性,且受匹配误差和拍摄角度偏差、位置偏差影响较小,能够有效的将变化区域提取。 Based on the electric power equipment automatic inspection robot, this paper presents an image processing approach for abnormal appearance of electric power equipment. Using camera images, we first automatically to find the robust feature points to match though SIFT method. Based on the basic match, we use RANSAC algorithms to find the Homography of the test image and the reference image. After the registration, we get the accurate location of the abnormal areas in the test image by Mean Shift segment method. The experimental results show that this method is efficient, and very robust to the angle deviation and position deviation, even the matching error.
出处 《光学与光电技术》 2010年第6期27-31,共5页 Optics & Optoelectronic Technology
关键词 电力设备 异常检测 SIFT特征提取 单应矩阵 Mean Shift分割 electric power equipment abnormal appearance detection SIFT homography Mean Shift segment
  • 相关文献

参考文献5

  • 1Lowe D,G Distinctive.Image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 2R I Hartley,A Zisserman.Multiple View Geometry in Computer Vision[M].London:Cambridge University Press,2000. 被引量:1
  • 3Jiri Matas,Ondre j Chum.Randomized ransac with t(d,d) test in BMVC02,2002,448-457. 被引量:1
  • 4Y CHENG.Mean shift,mode seeking and clustering[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1995,17(8):790-799. 被引量:1
  • 5李向东,鲁守银,王宏,管瑞清,楚光庆.一种基于变电站使用的移动机器人介绍[J].山东电力技术,2005,32(3):3-6. 被引量:4

二级参考文献1

共引文献3

同被引文献42

  • 1ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163. 被引量:1
  • 2AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072. 被引量:1
  • 3PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179. 被引量:1
  • 4VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72. 被引量:1
  • 5SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115. 被引量:1
  • 6COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575. 被引量:1
  • 7BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84. 被引量:1
  • 8HARITAOGLU I, HARWOOD D, DAVIS L. W4:real-time surveillance of people and their activities [ J ]. 1EEE Trans. Patt. Analy. Mach. Intell. ,2000,22(8) :809-830. 被引量:1
  • 9MORAVEC H. Visual mapping by a robot rover[ C ]. Proceedings of the International Joint Conference on Artificial Intel- ligence ( IJCAI ), San Francisco, USA, August 20,1979 : 598-600. 被引量:1
  • 10HARRIS C,STEPHENS M. A combined corner and edge detector[ C]. In 4th Alvey Vision Conference,August 31-Sep- tember 2,1988 : 147-151. 被引量:1

引证文献3

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部