期刊文献+

结合正样本集的核相关滤波跟踪算法 被引量:1

A KCF Tracking Algorithm Combined with Positive Sample Set
下载PDF
导出
摘要 针对核相关滤波(KCF)跟踪算法没有遮挡检测机制以及学习率固定的问题,提出了一种结合正样本集的核相关滤波跟踪算法。通过计算正样本集与待测样本集的相似度来建立目标遮挡判断机制,提高了算法的抗遮挡能力。在模型更新方面,采用了多段学习率的参数更新方式,提高了目标模型的准确性。实验结果表明,该算法与KCF跟踪算法比较,跟踪精度有明显提升。 The Kernelized Correlation Filtering( KCF) tracking algorithm has no occlusion detection mechanism, and has a fixed learning rate. To solve the problems, a KCF tracking algorithm combined with the positive sample set is proposed. The mechanism determining target occlusion is set up by calculating the similarity between the positive sample set and the sample set to be tested, and thus the anti-occlusion ability of the algorithm is improved. As to parameter updating, the method of multi-step learning rate is adopted,which improves the accuracy of the target model. Experimental results show that, compared with that of the KCF tracking algorithm, the tracking accuracy of the proposed method is obviously improved.
作者 刘伟 黄山 LIU Wei;HUANG Shan(Sichuan University,Chengdu 610065,China)
机构地区 四川大学
出处 《电光与控制》 北大核心 2018年第12期45-48,67,共5页 Electronics Optics & Control
关键词 目标跟踪 核相关滤波 遮挡 正样本集 多段学习率 target tracking kernelized correlation filter occlusion positive sample set multi-step learning rate
  • 相关文献

参考文献2

  • 1高文,朱明,贺柏根,吴笑天.目标跟踪技术综述[J].中国光学,2014,7(3):365-375. 被引量:89
  • 2刘志强..基于核相关滤波的高速目标跟踪算法研究与系统实现[D].西安电子科技大学,2015:

二级参考文献39

  • 1ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163. 被引量:1
  • 2AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072. 被引量:1
  • 3PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179. 被引量:1
  • 4VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72. 被引量:1
  • 5SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115. 被引量:1
  • 6COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575. 被引量:1
  • 7BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84. 被引量:1
  • 8HARITAOGLU I, HARWOOD D, DAVIS L. W4:real-time surveillance of people and their activities [ J ]. 1EEE Trans. Patt. Analy. Mach. Intell. ,2000,22(8) :809-830. 被引量:1
  • 9MORAVEC H. Visual mapping by a robot rover[ C ]. Proceedings of the International Joint Conference on Artificial Intel- ligence ( IJCAI ), San Francisco, USA, August 20,1979 : 598-600. 被引量:1
  • 10HARRIS C,STEPHENS M. A combined corner and edge detector[ C]. In 4th Alvey Vision Conference,August 31-Sep- tember 2,1988 : 147-151. 被引量:1

共引文献88

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部