期刊文献+

荧光磁粉探伤裂纹智能识别图像处理研究 被引量:5

Research on the Intelligent Identification Image Processing of Fluorescent Magnetic Powder Crack Inspection
下载PDF
导出
摘要 磁粉探伤的发展趋势是自动化、智能化,而工件表面状况、真伪裂纹、工况条件等使得现有的检测识别方法难以满足工件表面裂纹缺陷自动检测识别的需要。在分析工件表面荧光磁粉图像特征及裂纹缺陷特征的基础上,研究表征裂纹邻域像素空间相关度的二维直方图分布,提出基于多重分块极值的图像边缘检测算法。根据裂纹邻域像素空间相关度参数,以及裂纹缺陷的长宽比、圆形度等特征,设计了基于Fisher线性判别方法的工件裂纹识别算法。以此为基础的荧光磁粉探伤工件裂纹缺陷自动检测识别技术,应用于列车轮轴检测线实时检测,裂纹缺陷的有效检出率达99%。 Tendency of magnetic powder crack detection is automation and intelligentization. Because of exterior status, veritable or feigned crack object, site condition, etc., existing method can’ tsuccessfully automatically detect and identify cracks on the surface. Fluorescent magnetic powder image and crack image characteristics are analyzed, pixel spatial correlative degree of crack neighboring area is studied through two dimensional histogram distribution, image fringe detection based on multi-sub-area extremum is brought forward. Crack identification algorithm based on Fisher linear discrimination method is designed according to pixel spatial correlative degree of crack neighboring area, long-width ratio and round shape degree, etc. Railway Car wheel axis crack detection line equipped with this auto-detection and identification technology reaches an efficient crack detection ratio as high as 99%.
出处 《铁道技术监督》 2010年第10期6-10,共5页 Railway Quality Control
关键词 轮对 磁粉探伤 识别 图像处理 Wheel set Magnetic Powder Detection Identification Image Processing
  • 相关文献

参考文献3

二级参考文献11

  • 1KennethRCastleman著 朱志刚译.数字图象处理[M].电子工业出版社,1998.. 被引量:1
  • 2H D Cheng,M Miyojim. Automatic pavement distress detection system [J].Joumal of information Sciences, 1998; 108:219~240 被引量:1
  • 3Satoshi Abe,Toshio Abe,Hisao Sato et al.System Integration of Road Crack Evaluation System[J].SPIE Machine Vision Application in Industrial Inspection, 1993; 1907: 38~48 被引量:1
  • 4D Meignen,M Bemadet,H Briand. One Application of Neural Networks for Detection of Defects Using Video Data Bases:Identification of Road Distress[J].IEEE,1997 :459~464 被引量:1
  • 5Naoki Tanaka,Kenji Uematsu.A Crack Detection Method in Road Surface Images Using Morphology[C].In :Proc of IAPR Workshop on Machine Vision Application'98,1998-11:154~157 被引量:1
  • 6夏良正.数字图像处理[M].南京:东南大学出版社,2001.. 被引量:9
  • 7张志学.Visual C++项目开发指南[M].北京:清华大学出版社,2000.. 被引量:6
  • 8黄明举,苏海涛.计算机在产品无损检测中的应用[J].标准化报道,1999,20(6):29-30. 被引量:4
  • 9沈丽燕,王忠耀,刁伟光,尹兆升,杨召伟.轴承部件智能化磁粉自动探伤系统的研制[J].无损检测,2000,22(11):491-493. 被引量:3
  • 10俞巧云,李为民,翟超,胡红专,邓伟平,邢晓正.基于并行口的微步进电机控制系统[J].自动化与仪表,2001,16(2):51-53. 被引量:6

共引文献14

同被引文献39

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部