期刊文献+

The Stability of Banach Frames in Banach Spaces

The Stability of Banach Frames in Banach Spaces
原文传递
导出
摘要 In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or an Xd-frame for a Banach space X under perturbation. These results generalize and improve the related works of Balan, Casazza, Christensen, Stoeva and Jian et al. In this paper, we give some equivalent conditions on a Banach frame for a Banach space by using the pseudoinverse operator. We also consider the stability of a Banach frame for a Banach space X with respect to Xd or an Xd-frame for a Banach space X under perturbation. These results generalize and improve the related works of Balan, Casazza, Christensen, Stoeva and Jian et al.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第12期2369-2376,共8页 数学学报(英文版)
基金 Supported by Natural Science Foundation of Fujian Province, China (Grant No. 2009J01007) Education Commission Foundation of Fujian Province, China (Grant No. JA08013)
关键词 FRAME Banach frame Xd-frame pseudoinverse operator Frame, Banach frame, Xd-frame, pseudoinverse operator
  • 相关文献

参考文献24

  • 1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952). 被引量:1
  • 2Balan, R.: Stability theorems for Fourier frames and wavelet Riesz bases. J. Fourier Anal. Appl., 3(5), 499-504 (1997). 被引量:1
  • 3Casazza, P. G:: The art of frame theory. Taiwan Residents J. Math., 4(2), 129-201 (2000). 被引量:1
  • 4Casazza, P. G., Chrlstensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3(5), 543-557 (1997). 被引量:1
  • 5Casazza, P. G., Christensen, O.: Frames containing a Riesz basis and preservation of this property under perturbations. SIAM J. Math. Anal., 29(1), 266-278 (1998). 被引量:1
  • 6Christensen, O.: Frame perturbations. Proc. Amer. Math. Soc., 123(4), 1217-1220 (1995). 被引量:1
  • 7Christensen, O.: Frame containing a Riesz basis and approximation of the frame coefficients using finite- dimensional methods. J. Math. Anal. Appl., 199, 256-270 (1996). 被引量:1
  • 8Christensen, O.: A Paley-Wiener theory for frame. Proc. Amer. Math. Soc., 123(7), 2199-2201 (1995). 被引量:1
  • 9Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Ma$h. Soc., 38(3), 273-291 (2001). 被引量:1
  • 10Christensen, O.: An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部