期刊文献+

参考信号自提取的振动主动控制算法 被引量:3

Active Vibration Control Algorithm Using Reference Signal Self-Extraction
下载PDF
导出
摘要 基于滤波X最小均方差(filtered-X least mean square,简称FXLMS)控制方法实施振动主动控制的基本结构,提出了参考信号自提取的控制器结构和算法,直接利用系统误差信号获得对原激扰信号的一个估计,并用估计值作为自适应滤波器的参考信号,以实现与外激扰信号的相关性。在针对控制算法进行Matlab仿真分析的基础上,构建了压电机敏柔性板试验模型和测控平台,并进行了算法验证。试验结果表明,该控制算法不仅实现了参考信号从振动结构中直接提取,并具有较快的收敛速度和良好的控制效果。 Though the filtered X least mean square(FXLMS) control algorithm has drawn wide attention in the field of active structure vibration control,the algorithm has defects in practical application that the reference signal can not be extracted from the vibration structure directly.This paper proposed a control structure and algorithm that could extract the reference signal directly from the structure,with the basic thought that an estimated value of the original excitation signal obtained from the system error signal is regarded as the reference signal of adaptive filter in order to achieve correlation with external excitation signal.Based on the simulation analysis by MATLBA,an active vibration measurement and control platform for a piezoelectric flexible beam is established.With the constructed model structure and the experimental platform,the experiment of the proposed algorithm is conducted.The experimental results show that the control algorithm not only realizes the reference signal self-extraction from the vibratory structure,but also has a faster convergence speed and better control performance.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2010年第5期514-518,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:90716027) 上海人才发展基金资助项目(编号:2009020) 上海大学创新基金资助项目
关键词 自适应滤波控制 滤波X最小均方差控制算法 参考信号自提取 智能结构 振动主动控制 adaptive filter control FXLMS algorithm reference signal self-extraction intelligent structure active vibration control
  • 相关文献

参考文献10

  • 1周军,刘莹莹.航天器主动振动反馈全物理仿真试验研究[J].振动.测试与诊断,2008,28(1):50-54. 被引量:1
  • 2Yoon I, Song O, Librescu L. Vibration control of composite spacecraft booms subjected to solar heating[J]. Journal of Thermal Stresses, 2009,32 (1-2) : 95-111. 被引量:1
  • 3Kumar R, Singh S P, Chandrawat H N. MIMO adaptive vibration control of smart structures with quickly varying parameters: neural networks vs classical control approach [J]. Journal of Sound and Vibration, 2007,307(3-5) : 639-661. 被引量:1
  • 4Lan Hui, Zhang Ming, Ser W. A weight-constrained FxLMS algorithm for feedforward active noise control systems [J]. IEEE Signal Processing, 2002,9 (1) : 1-4. 被引量:1
  • 5Tsai C W, Huang Chinghuei, Lin ChunIiang. Structure-specified IIR filter and control design using real structured genetic algorithm[J]. Applied Soft Computing, 2009,9(4): 1285-1295. 被引量:1
  • 6Kuo S M, Gupta A, Mallu S. Development of adaptive algorithm for active sound quality control[J]. Journal of Sound and Vibration, 2007,299 (1-2) : 12- 21. 被引量:1
  • 7Glugla M, Schulz R K. Active vibration control using delay compensated LMS algorithm by modified gradients[J]. Journal of Low Frequency Noise Vibration and Active Control, 2008,27(1) :65-74. 被引量:1
  • 8Sun Xu, Chen Duanshi. A new infinite impulse response filter-based adaptive algorithm for active noise control[J]. Journal of Sound and Vibration, 2002,258 (2):385-397. 被引量:1
  • 9Bayard D S, Hadaegh F Y, Meldrum D R. Optimal experiment design for identification of large space structures[J]. Automatica, 1988,24 (3) :357-364. 被引量:1
  • 10Kumar K R, Narayanan S. Active vibration control of beams with optimal placement of piezoelectric sensor/ actuator pairs [J]. Smart Materials & Structures, 2008,17(5):1-15. 被引量:1

二级参考文献7

同被引文献14

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部