期刊文献+

改进FxLMS算法在主动振动控制中的应用 被引量:3

Improved FxLMS algorithm applied to active vibration control
下载PDF
导出
摘要 FxLMS(Filtered-x Least Mean Square)算法在主动振动控制系统中有着广泛的应用,在实际系统中由于参考输入信号会混入诸如测量噪声、冲击噪声、野值等与参考信号不相关的干扰信号,这会导致系统更新稳定性性能变坏,甚至发散。针对这个问题,提出一种改进的FxLMS算法。新的算法利用跟踪微分滤波器和非线性变换函数分别对参考输入信号和反馈误差信号进行处理。同时,以滤波器更新向量的差值最小为优化条件推导出新的更新公式。通过在主动振动控制系统中与已有算法进行仿真比较,仿真结果证明在处于噪声干扰的情况下新的算法体现出更好的更新稳定性。 FxLMS(Filtered-x Least Mean Square)has been used widely in AVC(Active Vibration Control)system. In practice, the signal produced by the sensors contains not only the signal but also interference, such as measurement noise or burst noise, which deteriorate the AVC system. In order to solve this problem, a new robust filtered-x LMS algorithm is proposed. A Tracking-Differentiator filter and a non-linear transformation function are designed to process the reference and error signals respectively. The updating formula of the filter coefficients in the proposed algorithm is derived from a new minimization criterion that minimizes the Euclidean norm of difference between the currently innovation vector and past vector. Compared with the existing algorithms, the proposed algorithm is more robust against interference to reference signals. Numerical simulation results show the effectiveness of the algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第12期230-234,共5页 Computer Engineering and Applications
基金 安徽中医药大学青年基金(No.2015qn006)
关键词 滤波-x最小均方算法(FxLMS) 主动振动控制 冲击噪声 跟踪微分滤波器 非线性变换 Filtered-x Least Mean Square (FxLMS) algorithm Active Vibration Control(AVC ) impulsive noise tracking-differentiator filter non-linear transformation
  • 相关文献

参考文献13

  • 1Kuo S M,Morgan D.Active noise control systems:algo- rithms and DSP implementations[M].New York, NY: John Wiley & Sons,1996. 被引量:1
  • 2Morgan D R.History,applications,and subsequent devel- opment of the FXLMS algorithm[J].Signal Processing Magazine, 2013,30(3 ) : 172-176. 被引量:1
  • 3Bernstein E R, Brammer A J, Yu G.Improving speech understanding in communication headsets: simulation of adaptive subband processing for speech in noise[J].Inter- national Journal of Industrial Ergonomics,2013,43(6) : 526-535. 被引量:1
  • 4George N V, Panda G.A robust evolutionary feedforward active noise control system using Wilcoxon norm and particle swarm optimization algorithm[J].Expert Systemswith Applications,2012,39(8) :7574-7580. 被引量:1
  • 5Ser W.A weight-constrained FxLMS algorithm for feed- forward active noise control systems[J].Signal Processing, 2002,9( 1 ) : 1-4. 被引量:1
  • 6Sun X,Kuo S M,Meng G.Adaptive algorithm for active control of impulsive noise[J].Journal of Sound and Vibra- tion, 2006,291 ( 1 ) : 516-522. 被引量:1
  • 7Akhtar M T, Mitsuhashi W.Improved adaptive algorithm for active noise control of impulsive noise[C]//9th Inter- national Conference on Signal Processing,ICSP 2008, 2008 : 2669-2672. 被引量:1
  • 8Zou Y,Chan S C,Ng T S.Least mean M-estimate algo- rithms for robust adaptive filtering in impulse noise[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,2000,47(12) : 1564-1569. 被引量:1
  • 9Li P,Yu X.Active noise cancellation algorithms for impul- sive noise[J].Mechanical Systems and Signal Processing, 2013,36(2) :630-635. 被引量:1
  • 10Ji H, Li B, Yao J.Electronic image stabilization algorithm based on TD filter[C]//2011 4th International Congress on Image and Signal Processing(CISP), 2011 : 682-686. 被引量:1

二级参考文献5

共引文献61

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部