期刊文献+

大数据集快速均值漂移谱聚类算法 被引量:5

Fast mean shift spectral clustering on large data sets
原文传递
导出
摘要 均值漂移谱聚类(MSSC)算法为模式识别聚类任务提供了一种较新的方案.然而由于其内嵌均值漂移过程的时间复杂度与样本容量呈平方关系,其在大数据集环境的实用性受到大大削弱.利用快速压缩集密度估计器(FRSDE)替代Parren窗密度估计式(PW)并融合基于图的松弛聚类(GRC)方法,提出了快速均值漂移谱聚类(FMSSC)算法.相比原MSSC,该算法的总体渐进时间复杂度与样本容量呈线性关系,并具有自适应性和便捷性. Mean shift spectral clustering(MSSC) provides an alternative for clustering tasks. However, due to the time complexity of its embedded mean shift is quadratic scaling in the sample size, the usefulness of MSSC is weakened greatly on large data sets. In this paper, the fast mean shift spectral clustering(FMSSC) algorithm is proposed by replacing parren window estimator(PW) with the fast reduced set density estimator(FRSDE) and combining with the graph-based relaxed clustering(GRC) technique. Compared with MSSC, the asymptotic time complexity of the proposed algorithm is linear with the data size, and the proposed method is straightforward and adaptable.
出处 《控制与决策》 EI CSCD 北大核心 2010年第9期1307-1312,共6页 Control and Decision
基金 国家自然科学基金项目(60773206 60903100 90820002) 江苏省自然科学基金项目(BK2009067)
关键词 密度估计 均值漂移 谱聚类 时间复杂度 图像分割 Density estimator Mean shift Spectral clustering Time complexity Image segmentation
  • 相关文献

参考文献20

  • 1Ozertem U, Erdogmus D, Jenssen R. Mean shift spectral clustering[J]. Pattern Recognition, 2008, 41: 1924-1938. 被引量:1
  • 2Heiler M, Keuchel J, Schnorr C. Semidefinite clustering for image segmentation with A-priori knowledge [C]. Proc of the 27th DAGM-Symposium. Vienna, 2005, 3663: 309- 317. 被引量:1
  • 3Shi J, Malik J. Normalized cuts and image segmentation[C]. Proc IEEE Conf on Computer Vision and Pattern Recognition. San Juan, 1997: 731-737. 被引量:1
  • 4Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 被引量:1
  • 5Higham D J, Kibble M. A unified view of spectral clustering[R]. Glasgow: University of Strathclyde, 2004. 被引量:1
  • 6Luxburg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. 被引量:1
  • 7Deng Z H, Chung F L, Wang S T. FRSDE: Fast reduced set density estimator using minimal enclosing ball[J]. Pattern Recognition, 2008, 41(4): 1363-1372. 被引量:1
  • 8Chung F L, Deng Z H, Wang S T. From minimum enclosing ball to fast fuzzy inference system training on large data sets[J]. IEEE Trans on Fuzzy Systems, 2009, 17(1): 173- 184. 被引量:1
  • 9Lee C, Zaiane O, Park H, et al. Clustering high dimensional data: A graph-based relaxed optimization approach[J]. Information Sciences, 2008, 178(23): 4501-4511. 被引量:1
  • 10Girolami M, He C. Probability density estimation from optimally condensed data samples[J]. IEEE Trans Pattern Analysis ang Machine Intelligence. 2003, 25(10): 1253- 1264. 被引量:1

同被引文献118

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部