期刊文献+

领域自适应大数据集浓缩方法

Concentration Approach of Large Data of Domain Adaptation
下载PDF
导出
摘要 传统机器学习均假定测试域和训练域处于同一概率分布,但现实中往往因各种原因引起所采集到的样本数据可能存在扰动或噪音情况,导致概率密度估计不一定准确。为有效解决这一问题,提出一种新的领域自适应数据集概率密度估计(A-RSDE)算法。该算法可充分学习源域(训练域)概率密度分布知识,使目标域(测试域)概率密度估计更接近真实概率密度分布。实验证明,该算法具有有效性,且实现了数据浓缩的目的。 The traditional machine learning assumes that the testing dataset has the same probability distribu- tion as the training one. However, in reality, the disturbance or noise which may exist in the collected datasets because of various reasons will cause the incorrect probability density estimation. In order to solve the problem, a new probability density estimation of domain adaptation (A-RSDE) is proposed. It gains the source domain's (training dataset) probability density knowledge, making the target domain's (testing dataset) probability density estimation closer to the true probability density distribution. Tests show that it is effective and achieve the objective of data concentration.
作者 许敏
出处 《温州职业技术学院学报》 2014年第4期38-42,59,共6页 Journal of Wenzhou Polytechnic
基金 国家自然科学基金(60903100) 江苏省教育厅高校哲学社会科学研究基金(2012SJB880077)
关键词 领域自适应 RSDE 最小包含球 核心集 数据浓缩 Domain adaptation RSDE Minimum enclosing ball Core-sets Data concentration
  • 相关文献

参考文献9

  • 1刘忠宝,王士同.从Parzen窗核密度估计到特征提取方法:新的研究视角[J].智能系统学报,2012,7(6):471-480. 被引量:2
  • 2Zhou J, Yang Y S, Zhang Y J.Improvlng generalization of Parzen density estimation by fuzzy c-means clustering[C]//Proceedlngs of IEEE 3rd International Conference on Software Engineering and Service Science(ICSESS), 2012:63-60. 被引量:1
  • 3Girolami M, He C.Probability density estimation from optimaIIy condensed data samples[J].IBEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1253-1264. 被引量:1
  • 4Deng Z H, Chung F L, Wang S T.FRSDE: Fast reduced set density estimator using minimal enclosing ball approximation[J]. Pattern Recognition, 2008, 41 (4):1363-1372. 被引量:1
  • 5许敏,王士同,顾鑫,俞林.基于RSDE的领域自适应概率密度估计方法[J].控制与决策,2013,28(1):125-130. 被引量:2
  • 6Kollios G, Gunopulos D.Effcient biased sampling for approximatle clustering and outlier detection in large datasets[J].]EEE Transactions on Knowledge and Data Engineering, 2003, 15(5):1170-1187. 被引量:1
  • 7Tsang J W, Kwok J T, Cheung P M.Core vector machines:fast SVM training on very large data sets[Jl.dournal of Machine Learning Research, 2005, 29(6):363-392. 被引量:1
  • 8Badoiu M, Clarkson K L.Optimal core sets for balls[J].Computational Geometry:Theory and Appllcations, 2008, 40(1):14-22. 被引量:1
  • 9Tsang I W, Kwok d T, Zurada J T.Generalized core vector macbines[J].IEEE Transactions on Neural Networks, 2006, 17(5):1126-1140. 被引量:1

二级参考文献32

  • 1张炤,张素,章琛曦,陈亚珠.基于支持向量机的概率密度估计方法[J].系统仿真学报,2005,17(10):2355-2357. 被引量:24
  • 2WANG Qinghua, ZHANG Youyun, LEI Cai, et al. Fault diag-nosis for diesel value trains based on non-negative matrix fac- torization and neural network ensemble [ J ]. Mechanical Sys- tems and Signal Processing, 2009, 23(5) : 1683-1695. 被引量:1
  • 3CAMACHO J, PIC J, FERRER A. Data understanding with PCA : structural and variance information plots [ J ]. Chemomet- rics and Intelligent Laboratory Systems, 2010, 100( 1 ) : 48-56. 被引量:1
  • 4LIPOVETSKY S. PCA and SVD with nonnegative loadings [ J]. Pattern Recognition, 2009, 42(1) : 68-76. 被引量:1
  • 5RADULOVIC J, RANKOVIC V. Feedforward neural net- work and adaptive network-based fuzzy inference system in study of power lines [ J ]. Expert Systems with Applications, 2010, 37(1): 165-170. 被引量:1
  • 6PETER N B, JOAO P H, DAVID J K. Eigenfaces vs Fisherfaces: recognition using class specific linear projec- tion [ J]. IEEE Trans on Pattern Analysis and Machine In- telligence, 1997, 19(7):711-720. 被引量:1
  • 7HU Y H, HE S H. Integrated evaluation methodl M]. Bei- jing: Scientific Press, 2000: 27-31. 被引量:1
  • 8ROWELS S T, SAUL L K. Nonlinear dimensionality reduc- tion by locally linear embedding [ J ]. Science, 2000 (290) : 2323-2326. 被引量:1
  • 9BELKIN M, IYOGI P. Laplacian eigenmaps and spectral tech- niques for embedding and clustering[ C]// Systems (NIPS). Cambridge: MIT NIYOG1 P Press, 2001 : 585-591. 被引量:1
  • 10]BORGA M, KNUTSSON H. Canonical correlation analysis in early vision[ C ]//Proceedings of the 9th European Sym- posium on Artificial Neural Networks. Bruges, Be|gium, 2001 : 309-314. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部