期刊文献+

改进SA-PSO在系统误差配准中的应用 被引量:2

Application of Improved SA-PSO in the System Error Registration
下载PDF
导出
摘要 针对融合系统中系统误差未固定的情况,将模拟退火算法SA(Simulated Annealing)引入到改进的粒子群优化算法PSO(Particle Swarm Optimization)中来解决系统误差配准问题。该方法结合了改进PSO的全面、快速寻优能力和SA的概率突跳特性,解决了PSO容易陷入局部最优的缺点,也保证了群体的多样性,避免了种群的退化。仿真结果表明,改进的SA-PSO方法较PSO、GA方法在系统误差配准精度上得到了提高。 System error is change in some fusion system. In order to resolve the problem of system error registration, this paper combine improved Particle Swarm Optimization (PSO) with Simulated Annealing (SA).This method integrates the capacity of fast optimization seeking in improved PSO with the characteristic ofprobabilistic leap in SA, which not only solves the defect that PSO easily plunges into local optimum, but also ensures population variety and avoids population degradation. The simulations show that compared with PSO and GA, improved SA-PSO has better precision in system error registration.
出处 《光电工程》 CAS CSCD 北大核心 2010年第9期27-31,38,共6页 Opto-Electronic Engineering
基金 国家自然科学基金重点项目(60634030) 国家自然科学基金项目(60702066)
关键词 系统误差 误差配准 粒子群优化(PSO) 模拟退火(SA) system error error registration particle swarm optimization (PSO) simulated annealing (SA)
  • 相关文献

参考文献15

  • 1Burke J J.The SAGE Real time quality control function and its interface with BUIC II/BUICIII[R].MITRE Corporation Technical Report,1996. 被引量:1
  • 2Leung H,Blancher M.A least square fusion of multiple radar data[C] // Proceedings of RADAR '94,Paris,1994:364-369. 被引量:1
  • 3AM P Dana.Registration:A prerequisite for multiple sensor tracking.Multitarget-multisensor Tracking:Advanced Applications[M].Norwood:Artech House,1990. 被引量:1
  • 4ZHOU Yi-feng,Leung H,Blanchette M.Sensor alignment with Earth-Centered Earth-Fixed(ECEF) coordinate system[J].IEEE Trans.on Aerospace and Electronic Systems(S0018-9251),1999,35(2):410-418. 被引量:1
  • 5ZHOU Yi-feng,Leung H.An exact maximum likelihood registration algorithm for data fusion[J].IEEE Trans.Signal Proeessing(S1053-587X),1997,45(6):1560-1572. 被引量:1
  • 6Dhar S.Application of a recursive method for registration error correction in tracking with multiple sensors[C] // Proceeding of the 1993 American Control Conference,San Francisco,CA,1993:869-874. 被引量:1
  • 7Haim Karniely,Hava T S.Sensor registration using neural networks[J].IEEE Trans.on Aerospace and Electronic Systems(S0018-9251),2000,36(1):85-100. 被引量:1
  • 8王波,李瑞涛,王灿林,朱丹.一种改进的变异粒子群算法研究[J].军械工程学院学报,2006,18(3):50-52. 被引量:5
  • 9王波,王灿林,董云龙.吸收变异的粒子群算法及应用[J].海军航空工程学院学报,2006,21(4):410-412. 被引量:6
  • 10Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans.on Evolutionary Computation(S1089-778X),2002,6(1):58-73. 被引量:1

二级参考文献11

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2孟凡辉,王秀坤,赫然,唐一源.一种改进的耗散粒子群算法[J].计算机工程与应用,2005,41(12):34-36. 被引量:2
  • 3[2]Shi Y,Eberhart R C.Fuzzy Adaptive particle swarm optimization[C]//Proc of the congress on Evolutionary Computation,Seoul Korea,2001 被引量:1
  • 4[3]Eberhart R,Kennedy J.A new optimizer using Particle swarm theory[C]//Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,2001 被引量:1
  • 5[6]Zhou Yifeng,Henry L.An exact maximum likelihood registration algorithm for data fusion[J].IEEE Trans Signal Processing,1997,45(6):1560-1572 被引量:1
  • 6Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proceedings of the IEEE Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998, 69-73. 被引量:1
  • 7Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001, 101-106. 被引量:1
  • 8Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995, 1942-1948. 被引量:1
  • 9Eberhart R C, Shi Y. Particle Swarm Optimization: developments,applications and resources [C]//Proc. 2001 Congress Evolutionary Computation. Piscataway, N J: IEEE Press, 2001, 81-86. 被引量:1
  • 10吴浩扬,朱长纯,常炳国,刘君华.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30. 被引量:75

共引文献127

同被引文献36

  • 1王波,王灿林,董云龙.吸收变异的粒子群算法及应用[J].海军航空工程学院学报,2006,21(4):410-412. 被引量:6
  • 2王波,李瑞涛,王灿林,朱丹.一种改进的变异粒子群算法研究[J].军械工程学院学报,2006,18(3):50-52. 被引量:5
  • 3Burke J J.The SAGE real time quality control function and itsinterface with BUIC-Ⅱ/BUIC-Ⅲ[R].MITRE CorporationTechnical Report,1966. 被引量:1
  • 4Leung H,Blanchette M.A least square fusion of multiple radardata[C]∥Proc.of Radar,1994:364-369. 被引量:1
  • 5Bar-Shalom Y.Multitarget-multisensor tracking:advanced ap-plications[M]∥Dana M P.Registration:aprerequisite for mul-tiple sensor tracking.Norwood,MA:Artech House,1990. 被引量:1
  • 6Zhou Y F,Henry L,Martin B.Sensor alignment with earth-cen-tered earth-fixed(ECEF)coordinate system[J].IEEE Trans.onAerospace and Electronic Systems,1993,35(2):410-417. 被引量:1
  • 7Zhou Y F,Henry L.An exact maximum likelihood registrationalgorithm for data fusion[J].IEEE Trans.on Signal Process-ing,1997,45(6):1560-1572. 被引量:1
  • 8Dhar S.Application of a recursive method for registration errorcorrection in tracking with multiple sensors[C]∥Proc.ofAmerican Control Conference,1993:875-879. 被引量:1
  • 9Dela C E J,Alouani A T,Rice T R,et al.Sensor registration inmultisensor systems[C]∥Proc.of the SPIE Conference onSignal and Data Processing of Small Targets,1992:382-393. 被引量:1
  • 10Friedland B.Treatment of bias in recursive filtering[J].IEEETrans.on Automatic Control,1969,14(4):359-367. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部