期刊文献+

基于信息素机制的离散粒子群算法及其应用 被引量:5

Discrete Particle Swarm Optimization Algorithm and Its Application Based on Pheromone Mechanism
下载PDF
导出
摘要 借鉴蚁群算法的信息素机制,提出了一种基于信息素机制的离散粒子群算法。采用信息素机制的主要作用是使飞行在空间中的各个粒子不但要根据自己的信息来判断飞行方向,还可以根据其它粒子留下的信息进行方向判断。背包问题实验结果显示,该算法可以获得较优解。然后,将该算法应用到乳腺癌病人识别问题的特征选择上,结果显示,采用特征选择后的属性数据,所训练的网络可以获得较高的识别率。 A pheromone-based discrete particle swarm optimization algorithm was proposed borrowing the idea of pheromone refresh mechanism of ant colony algorithm.There was a main reason for using pheromone.The fly direction of particles in the space was changed according to not only the information of itself,but also the information other particles left. Knapsack problem was used to test the performance of the algorithm.Compared with the other algorithms,the results show that the proposed algorithm could acquire the better value.Then,the proposed algorithm is used to select characters in breast cancer recognition.The experimental results show that the recognition rate is obviously improved by using the attributes selected.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第2期395-398,414,共5页 Journal of System Simulation
基金 国家自然科学基金资助项目(60675043)
关键词 离散粒子群 特征选择 信息素 背包问题 discrete particle swarm character selection pheromone knapsack problem
  • 相关文献

参考文献12

二级参考文献44

  • 1薛福珍,柏洁.基于先验知识和神经网络的非线性建模与预测控制[J].系统仿真学报,2004,16(5):1057-1059. 被引量:14
  • 2窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:38
  • 3聂成.目标分配的数学模型[J].系统工程与电子技术,1997,19(8):38-39. 被引量:7
  • 4VARELA G N, SINCLAIR M C. Ant colony optimization for virtual--wavelength --path routing and wavelength allocation[A]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Washington DC: IEEE, 1999. 1809--1816. 被引量:1
  • 5BAUER A, BULLNHEIMER B, HARTL R F, STRAUSSC. An ant colony optimization approach for the single machine total tardiness problem[A]. Proceedings of the 1999 Congresson Evolutionary Computation [C]. Washington DC: IEEE,1999. 1445-- 1450. 被引量:1
  • 6KRIEGER MICHAEL J B, et al. Ant--like task allocation and recruitment in cooperative robots[J]. Nature, 2000,406:39--42. 被引量:1
  • 7HOOGEVEEN J A, LENSTRA J K, VELTMAN B. Preemptive scheduling in a two--stage multiprocessor flow shop is NP--hard[J]. European Journal of Operational Research, 1996,89(1): 172--175. 被引量:1
  • 8DUDEK R A, et al. The lessons of flowshop scheduling research[J]. Operations Research, 1992, 40(1):7--13. 被引量:1
  • 9LINN R, ZHANG Wei, Hybrid flowshop seheduling:a survey[J]. Computers & Industrial Engineering, 1999,37(1-- 2) : 57--61. 被引量:1
  • 10CAMAZINE S, et al. Self--organization in biological systems[M]. Princeton USA: Princeton University Press, 2001. 被引量:1

共引文献456

同被引文献42

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部