摘要
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。
Particle Swarm Optimization(PSO) algorithm is an evolutionary computation technique.It finds the optima of search spaces through the interaction of individuals in a population of particles.Based on the analysis of the evolutionary equations of the basic PSO algorithm,the paper proposes the modified PSO algorithm,which has better global optimal capability with faster evolution speed.The results of the five benchmark functions prove the model to be feasible.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第9期80-81,121,共3页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.60574042)
关键词
粒子群优化
惯性权重
进化计算
particle swarm optimization
inertia weight
evolutionary computation