期刊文献+

一种改进粒子群算法及其在PID参数整定中的应用 被引量:4

A Modified PSO Algorithm and Its Application in Tuning of PID
下载PDF
导出
摘要 针对基本粒子群算法易早熟、易陷入局部最优解及搜索精度不高的缺点,提出了一种新的学习因子取法,综合随机惯性权重和变异机制,得到一种改进的粒子群算法,通过复杂函数寻优验证了该方法的可行性及全局收敛方面的优越性;并将该算法应用于PID参数整定中,取得了良好的效果。 Because of the problem that the particle swarm optimization is difficult to deal with premature and local minimum a novel PSO algorithm is presented in the paper. The modified PSO algorithm is based on the method of random learning-gene in combination with the random inertia weights and mutation The results of complex function testing and of the tunning of PID are also presented.
出处 《自动化技术与应用》 2008年第12期14-16,共3页 Techniques of Automation and Applications
关键词 粒子群 PID 学习因子 PSO PID learning-gene
  • 相关文献

参考文献5

二级参考文献12

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proc.IEEE Int'l.Conf.on Neural Networks.IV.Piscataway,NJ,IEEE Service Centerm,1995.1942-1948. 被引量:1
  • 3Y Shi,R C Eberhart.Empirical Study of Particle Swarm Optimization[C].In:Proceedings of the 1999 Congress on Evolutionary Computation,Piscataway,NJ,IEEE Service Centerm,1999.1945-1950. 被引量:1
  • 4Y Shi,R C Eberhart.A Modified Particle Swarm Optimization[C].In:Proceedings of the 1999 Congress on Evolutionary Computation.IEEE Press,Piscataway,NJ,1998.69-73. 被引量:1
  • 5Asanga Ratnaweera,Saman K Halgamuge and Harry C Watson.Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients[J].IEEE transactions on evolutionary computation,June 2004,8(3):240-255. 被引量:1
  • 6X F Xie,W J Zhang,D C Bi.Optimizing semiconductor devices by self-organizing particle swarm[R].Congress on Evolutionary Computation (CEC),Oregon,USA,2004.2017-2022. 被引量:1
  • 7X F Xie,W J Zhang,Z L Yang.A dissipative particle swarm optimization[R].Congress on Evolutionary Computation (CEC),Hawaii,USA,2002.1456-1461. 被引量:1
  • 8W J Zhang,X F Xie.DEPSO:hybrid particle swarm with differential evolution operator[J].IEEE Int.Conf.on Systems,Man & Cybernetics (SMCC),Washington D C,USA,2003.3816-3821. 被引量:1
  • 9Jiang Chuanwen,Bompard Etorre.A Self-adaptive Chaotic Particle Swarm Algorithm for Short Term Hydroelectric System Scheduling in Deregulated Environment[J].Energy Conversion and Management (S0196-8904),2005,17 (46):2689-2696. 被引量:1
  • 10Chatterjee A,Siarry P.Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J].Computers & Operations Research (S0305-0548),2005,3(33):859-871. 被引量:1

共引文献49

同被引文献20

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部