摘要
设计了一种基因拟子协同进化算法(GMCA),并应用于水电优化调度问题。基于基因拟子协同进化理论,定义了算法中的拟子和文化的概念,设计了算法步骤,设计了发展、感染、复兴、消亡四个文化进化算子和判断文化衰老的方法,建立了算法求解水电优化调度问题的方法和流程,通过仿真验证了算法的有效性。与遗传算法(GA)、混合遗传算法(HGA)、粒子群算法(PSO)等相比较,基因拟子协同进化算法显得更为有效。这为水电优化调度等问题提供了新的求解技术。
In this paper we develop a gene-meme co-evolution algorithm(GMCA) for the optimal hydropower operation by adopting the gene-meme co-evolution theory and the definitions of meme and culture.We designed a solution procedure for this algorithm and four cultural evolution operators for development,defection,revival and renaissance,studied the method of judging cultural senility,and obtained a GMCA solution for the optimal hydropower operation.Through testing and verification simulations,we demonstrate the higher performance of GMCA relative to that of GA,HGA and PSO algrithms.Thus the present work provides a new idea and technique for optimal hydropower operation.
出处
《水力发电学报》
EI
CSCD
北大核心
2010年第4期58-62,69,共6页
Journal of Hydroelectric Engineering
基金
浙江省自然科学基金项目(Y505360)
国家自然科学基金项目(60374056)
关键词
水利工程
优化调度
基因拟子协同进化算法
水电
hydraulic engineering
optimal operation
gene-meme co-evolution algorithm
hydropower