期刊文献+

热轧过程中加热炉炉温优化控制方法 被引量:3

Optimizing Control Method of Reheating Furnace Temperature in Hot Rolling Process
原文传递
导出
摘要 为了有效地解决当前加热炉能源消耗高、控制精度差、控制滞后等问题,针对步进式加热炉的工艺特点,提出了加热炉燃烧过程的智能控制策略,即模糊RBF网络自学习和自寻优功能,并结合动态PID反馈补偿策略。经试验表明,该系统不仅保证了在工况波动下的炉温控制精度,提高升降温速度,减少吨钢燃耗、电耗和钢坯烧损,而且提高了加热炉的生产能力。 In order to efficiently solve such the problems in the combustion process of reheating furnace as the high consumption of energy,the poor precision and time-delay of the temperature control.etc.,an intelligent control strategy of the combustion process of reheating furnace was proposed,according to the technical characteristics of walking beam reheating furnace,namely Fuzzy-RBF networks self-learning and the optimization function,and the dynamic PID feedback compensation strategy of reheating furnace.The results show,the system not only can ensure the accuracy of the furnace temperature controlled,increases the speed of temperature adjustment and reduces the energy consumption,electricity consumption and the billet combustion loss,but also can effectively improve production capacity.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2010年第8期60-63,共4页 Journal of Iron and Steel Research
基金 国家自然科学基金资助项目(50735005)
关键词 模糊RBF 加热炉 热轧过程 动态PID反馈 fuzzy radial basis function(RBF) system reheating furnace hot rolling process dynamic PID feedback compensation
  • 相关文献

参考文献10

二级参考文献24

共引文献46

同被引文献56

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部