摘要
针对汽包水位常规的PID控制方式,采用了一种模糊神经网络智能控制器,该控制器结合了模糊控制与神经网络学习能力强的特点,将2种智能控制相结合,在线调整控制器参数,整定出一组优化的控制器参数。仿真结果表明此控制器显著地改善了汽包水位的动态性能和稳定性能。
Accoring to the conventional PID control of drum levels,a kind of fuzzy and neural network controller is used for drum level.The controller combines the characteristic of both fuzzy control and neural network,which can adjust an appropriate PID parameters online.The simulation result shows that fuzzy RBF network controller is evidently more excellent than conventional PID controller in dynamic performance and automatic adjustment.
出处
《河北工业科技》
CAS
2010年第4期248-250,共3页
Hebei Journal of Industrial Science and Technology
基金
盐城工学院基金资助项目(XKY2007064)
关键词
模糊控制
神经网络
汽包水位
径向基函数
fuzzy control
neural network
drum water level
radial basis function(RBF)