期刊文献+

消除油垢热分析实验噪音方法和热动力学研究 被引量:2

Denoising for thermogravimetry signal of cooking oil and thermokinetic analysis
下载PDF
导出
摘要 利用自行设计的较大物量的热质量损失(TG)分析装置,获得餐饮业油烟道油垢燃烧特性曲线。根据实验结果,将小波去噪方法引入到TG数据的平滑处理,通过正交化实验得到了最佳的小波参数,通过与常规的移动平均法、高斯平滑法、Vondrak平滑法比较,发现自适应小波变换在TG数据平滑处理提高了信噪比,均方根误差减小。最后通过比较微分法和积分法计算得到的动力学参数,发现原始TG数据计算的动力学参数和小波变换处理得到的微分热质量损失(DTG)数据计算得到的参数符合得很好,表明文中方法是有效的,可以直接地应用于热动力学分析中。 The curves of combustion characteristics of cooking oil tar in pipe were obtained by using a self-designed thermogravimetric(TG) device with a large capacity.The wavelet transform was introduced into the thermogravimetric data smoothing and differentiation analysis according to the experimental results,and the orthogonal test method was used to find the optimized wavelet parameters.The wavelet transform results were compared with the traditional "Moving Average","Gaussian Smoothing" and "Vondrak Smoothing" methods and it shows that the signal-to-noise ratio of the measurement is increased and root-mean-square(RMS) error is decreased.The kinetic parameters calculated from the original TG curves and smooth differential thermogravimetric(DTG) curves are in good agreement,thus the wavelet transform smoothing algorithms can be used directly and accurately in the thermokinetic analysis.
出处 《化学工程》 CAS CSCD 北大核心 2010年第6期95-98,共4页 Chemical Engineering(China)
基金 浙江省科技计划项目(2007C203063) 浙江省"新苗人才计划"项目(2008R40G2080006)
关键词 小波变换 热质量损失(TG) 油垢 平滑 热动力学 wavelet transform thermogravimetric cooking oil tar smoothing thermokinetic
  • 相关文献

参考文献14

  • 1LARK R M,KAFFKA S R,CORWIN D L.Multiresolution analysis of data on electrical conductivity of soil using wavelets[J].Journal of Hydrology,2003,272(4):276-290. 被引量:1
  • 2OPFERMANN J.Kinetic analysis using multivariate non-linear regression[J].Journal of Thermal Analysis and Calorimetry,2000,60(2):641-658. 被引量:1
  • 3陈海翔..生物质热解的物理化学模型与分析方法研究[D].中国科学技术大学,2006:
  • 4陈海翔,刘乃安,舒立福,宗若雯.热重数据的平滑和微分[J].火灾科学,2004,13(1):1-10. 被引量:7
  • 5STAGGS J E J.Savitzky-Golay smoothing and numerical differentiation of cone calorimeter mass data[J].Fire Safety Journal,2005,40(6):493-505. 被引量:1
  • 6DONOHO D L,JOHNSONE I M.Adapting to unknown smoothness via wavelet shrinkage[R].Journal of the American Statistical Association,1995,90(432):1200-1224. 被引量:1
  • 7DONOHO D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627. 被引量:1
  • 8SANTOSO S,POWERS E J,HOFMANA P.Power qua-lity assessment via wavelet transform analysis[J].IEEE Trans on Power Delivery,1996,11 (2):924-930. 被引量:1
  • 9BRUNI V,VITULANO D.Wavelet-based signal de-noising via simple singularities approximation[J].Signal Processing,2006,86(4):859-876. 被引量:1
  • 10ZHAO Ting,YU Yang.Threshold de-noising analysis of machinery vibrating signal based on wavelet transform,electronic measurement and instruments[C] ∥ ICEMI 07,8th International Conference on Electronic Measurement and Instruments IEEE.Beijing:IEEE,2007,3:1041-1044. 被引量:1

二级参考文献1

共引文献6

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部