期刊文献+

酵母细胞甘油代谢与生理功能研究进展 被引量:13

Progress in Glycerol Metabolism and its Physiological Function in Yeast Cells
原文传递
导出
摘要 甘油是酵母细胞生长代谢过程中常见的多元醇物质。尽管甘油的结构简单,代谢途径并不复杂,但是其在细胞内的生理功能十分重要。甘油代谢过程主要参与细胞的高渗透压生理调节和厌氧条件下的胞内氧化还原平衡调节。近年来许多学者在酵母细胞的甘油代谢及生理功能方面开展了深入的研究。在扼要介绍甘油生理代谢的基础上,重点阐述甘油代谢参与细胞高渗压甘油应答信号途径和氧化还原平衡调节的生理机制,同时就酵母细胞甘油合成的代谢工程进行归纳和评述。 Glycerol,a common polyol metabolite,is produced during yeast cells growth,propagation and glucose metabolism.Though glycerol structure and metabolic pathway is very simple,it plays an important physiological role in yeast cells,especially which are exposed in such stress conditions as hypertonic medium,frozen temperature and anaerobic environment.Glycerol metabolism is involved in osmoregulation and redox balance regulation.Recently,physiological function of glycerol in yeast,especially for Saccharomyces cerevisiae,were focused on and investigated widely.Glycerol metabolism was introduced succinctly,and the correlations of glycerol production and osmoregulation,redox balance are emphasized on.Moreover,metabolic engineering for glycerol biosynthesis and its future research prospects are discussed.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2010年第5期140-148,共9页 China Biotechnology
关键词 酵母细胞 甘油代谢 高渗压甘油途径 氧化还原平衡 Saccharomyces cerevisiae Glycerol metabolism High osmotic glycerol pathway Redox balance
  • 相关文献

参考文献39

  • 1Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 2002, 66(2): 300-372. 被引量:1
  • 2Maeda T, Wurgler-Murphy S M, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 569 (6477) : 242-245. 被引量:1
  • 3Wang Z X, Zhuge J, Fang H, et al. Glycerol production by microbial fermentation : a review. Biotechnol Adv, 2001, 19 (3) : 201-223. 被引量:1
  • 4Pahlman A K, Granath K, Ansell R, et al. The yeast glycerol 3- phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem, 2001, 276 (5) : 3555-3563. 被引量:1
  • 5Cronwright G R, Rohwer J M, Prior B A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol, 2002, 68(9) : 4448-4456. 被引量:1
  • 6Larsson C, Pahlman I L, Ansell R, et al. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast, 1998, 14(4) : 347-357. 被引量:1
  • 7Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem, 1997, 272 ( 9 ) : 5544- 5554. 被引量:1
  • 8Ronnow B, Kielland-Brandt M C. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saceharomyces cerevisiae. Yeast, 1993, 9(10): 1121-1130. 被引量:1
  • 9Forster J, Famili I, Fu P, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 2003, 13(2) : 244-253. 被引量:1
  • 10Nielsen J. It is all about metabolic fluxes. J Bacteriol, 2003, 185 (24) : 7031-7035. 被引量:1

二级参考文献23

  • 1Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 2002, 66 (2): 300-372 被引量:1
  • 2Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3- phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng, 2001, 3 (4): 301-312 被引量:1
  • 3Ansell R, Granath K, Hohmann S, et al. The two isoenzymes for yeast NAD^+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. Embo J, 1997, 16 (9): 2179-2187 被引量:1
  • 4Bjorkqvist S, Ansell R, Adler L, et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saecharomyces eerevisiae. Appl Environ Microbiol, 1997, 63 (1): 128-132 被引量:1
  • 5Valadi A, Granath K, Gustafsson L, et al. Distinct intracellular localization of Gpdlp and Gpd2p, the two yeast isoforms of NAD^+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem, 2004, 279 (38): 39677-39685 被引量:1
  • 6Modig T, Granath K, Adler L, et al. Anaerobic glycerol production by Saecharomyces eerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol, 2007, 75 (2): 289-296 被引量:1
  • 7Chen X, Fang H, Rao Z, et al. Cloning and characterization of a NAD-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res, 2008, 8(5): 725-734 被引量:1
  • 8Rose M D, Winston F, Hieter P. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. 2000 ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. 1998.205 被引量:1
  • 9Andreasen A A, Stier T J. Anaerobic nutrition of Saeeharomyees eerevisioe. Ⅱ. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol, 1954, 43 (3): 271 -281 被引量:1
  • 10Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 3rd. New York: Cold Spring Harbor Laboratory Press, 1989.27-31 被引量:1

共引文献12

同被引文献135

引证文献13

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部