期刊文献+

盐胁迫下酿酒酵母和鲁氏酵母渗透调节方式的对比与分析 被引量:11

COMPARISON AND ANALYSIS OF OSMOTIC REGULATION BETWEEN SACCHAROMYCES CEREVISIAE AND ZYGOSACCHAROMYCES ROUXII UNDER SALT STRESS
下载PDF
导出
摘要 酵母菌是耐盐的真核模式生物.为了研究酵母菌在不同盐胁迫条件下的渗透调节方式,本文以不同条件对酿酒酵母和鲁氏酵母进行盐胁迫处理,利用高碘酸钠—乙酰丙酮法及蒽酮-硫酸法分别对盐胁迫下酿酒酵母和鲁氏酵母产生的甘油和海藻糖含量进行了测定、分析与比较.结果表明,在不同盐胁迫条件下酿酒酵母和鲁氏酵母细胞内均迅速积累大量的甘油和海藻糖.盐胁迫下鲁氏酵母以甘油调节渗透平衡的能力高于酿酒酵母以甘油调节渗透平衡的能力,盐胁迫下酿酒酵母以海藻糖调节渗透平衡的能力高于鲁氏酵母的海藻糖渗透调节能力. Yeast is a model eukaryotic organism and salt-tolerant microorganism.In order to study the osmotic regulation mode of yeast under different salt stress conditions,we treated Saccharomyces cerevisiae and Zygosaccharomyces rouxii cells with different concentration of NaCl for different time and determined the contents of glycerol and trehalose accumulated in yeast cells by sodium periodate-acetylacetone and anthroneH2SO4 method respectively.The results indicate that,under salt stress,yeast cells accumulate large amounts of glycerol and trehalose in both of Saccharomyces cerevisiae and Zygosaccharomyces rouxii cells.The osmotic regulation ability of Saccharomyces cerevisiae by glycerol is stronger than that of Zygosaccharomyces rouxii,while its osmotic regulation ability of by trehalose is weaker than that of Zygosaccharomyces rouxii.
出处 《哈尔滨师范大学自然科学学报》 CAS 2007年第2期91-95,共5页 Natural Science Journal of Harbin Normal University
基金 黑龙江省教育厅科学技术研究资助项目(10551098)
关键词 盐胁迫 酿酒酵母 鲁氏酵母 渗透调节 甘油 海藻糖 Salt stress Saccharomyces cerevisiae Zygosaccharomyces rouxii Osmotic regulation Glycerol Trehalose
  • 相关文献

参考文献15

  • 1[1]Marquez J A,Pascual2 Ahuir A,Proft M,Serrano R.The Ssn62Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG2 dependent and 2 independent genes[J].EMBO,1998,(9):2543~2553. 被引量:1
  • 2[2]Goossens A,Dever T E,Pascual2Ahuir A,Serrano R.The protein kinase Gcn -p mediates sodium toxicity in yeast[J].Biol Chem,2001,273(33):30753 ~30760. 被引量:1
  • 3[3]Seranno R,Mulet J M,Ríos G,Marquez J A,de Larrinoa I,Leube M,Men-dizabal I,Pascual-Ahuir A,Proft M,Ros R,Montesinos C.A glimpse of the mechanisms of ion homeostasis during salt stress[J].Experimental Botany,1999,50(special issue):1023 ~ 1036. 被引量:1
  • 4[4]Brown A D.Microbial water stress.Bacteriol Rev,1976,40:803 ~ 846. 被引量:1
  • 5[5]Yale J.Bohnert HJ.Transctipt expression in Saccharomyces cerevisiae at high salinity.Biol.Chem,2001; 276 (19):15996 ~16007. 被引量:1
  • 6[6]Kuniho Nakata,Junko Haseqwa,Kazuhiko Okamur.Accumulation and role of trehalose in Torulaspora delbrueckii No.3110.Biosci Bio2 tech Biochem,1995,59 (6):986 ~989. 被引量:1
  • 7[7]Sukesh,Chander,Sharma,A possible role of trehalose in osmotoler2 ance and ethanol tolerance in Saccharomyces cerevisiae,FEMS Micro2 biol Lett,1997,152:11 ~15. 被引量:1
  • 8[8]Flowers TJ.Improving crop salt tolerance.J.Exper.Bot.2004,55(396):307~319. 被引量:1
  • 9[9]Meikle AJ,Reed RH,Gadd GM.The osmotic responses of Saccharomyces cerevisiae in K (+)2depleted medium.FEMS Microbiol Lett,1991,78:89~94. 被引量:1
  • 10[10]Posas F,Chambers JR,et al.The transcriptional response of yeast to saline stress.Biol Chem,2000; 275 (23):17249 ~17255. 被引量:1

二级参考文献4

共引文献23

同被引文献141

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部