期刊文献+

基于社群隐含主题挖掘和多社群信息融合的自动图像标注 被引量:6

Automatic Image Annotation Using Social Group Latent Topic Mining and Multi-group Information Fusion
下载PDF
导出
摘要 在Flickr图像共享网站上,大量无标签或者缺少标签的图像往往会因为标签信息的不完整,以致无法被有效地利用和检索。为了有效地进行图像检索,从Flickr用户经常会根据上传图像所隐含的主题而将其推荐到多个相关社群的特点出发,提出了一种新颖的基于社群隐含主题挖掘和多社群信息融合的自动图像标注算法。与传统的自动图像标注方法不同,该算法首先采用隐Dirichlet分配模型(latent Dirichlet allocation,LDA)对单个社群里的隐含主题(topic)进行挖掘,并利用隐含主题对由相似图像标签传播产生的初始"噪音"标签进行过滤;然后对同属于多个社群的图像,通过多社群信息融合来生成最终标注结果。实验结果显示了该新算法的有效性。 At photo sharing websites like Flickr, a lot of images can not be effectively used and retrieved due to lack of tags. In order to retrieve images effectively, this paper presents a novel social group latent topic mining and multi-group information fusion based automatic image annotation algorithm by exploiting the property that users in Flickr often recommend their uploaded pictures to associated social groups according to the hidden topics in each picture. Different from traditional automatic image annotation methods, this algorithm first adopts the latent Dirichlet allocation model to mine the latent topics in single social group and makes use of the hidden topics to filter initial noisy tags generated by tag propagation among similar images, then utilizes multi-group information fusion to generate the final annotations for images simultaneously belonging to multiple social groups. Experimental results show the effectiveness of this algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第6期944-950,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60833006) 国家高技术研究发展计划(863)项目(2006AA010107) 浙江省科技计划项目重点项目(2008C13G1410001)
关键词 自动图像标注 社群 潜在主题挖掘 隐Dirichlet分配模型 多社群信息融合 automatic image annotation, social group, latent topic mining, latent Dirichlet allocation, multi-group information fusion
  • 相关文献

参考文献2

二级参考文献12

  • 1Bell, R.M.,Koren, Y.,Volinsky, C.Modeling Rela-tionships at Multiple Scales to Improve Accuracy of Large Recommender Systems[].Proc th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining.2007 被引量:1
  • 2de Silva, V,Tenenbaum, J.B.Global versus Local Methods in Nonlinear Dimensionality Reduction[].Neural Information Processing Systems.2003 被引量:1
  • 3Frey, B.J.,Dueck, D.Mixture Modeling by Affinity Propagation[].Neural Information Processing Systems.2006 被引量:1
  • 4Guha, S.,Rastogi, R.,Shim, K.CURE: an efficient clustering algorithm for large databases[].Inf Syst.2001 被引量:1
  • 5MacQueen,J.Some Methods for Classification and Analysis of Multivariate Observations[].Proc th Berke-ley Symp on Mathematical Statistics and Probability.1967 被引量:1
  • 6Silva, J.G.,Marques, J.S.,Lemos, J.M.Selecting Landmark Points for Sparse Manifold Learning[].Ad-vances in Neural Information Processing Systems.2005 被引量:1
  • 7Wittman,T.MANIfold Learning Matlab Demo[].Http://wwwmathumnedu/~wittman/researchhtml.2005 被引量:1
  • 8Zhuang, Y.T,Zhang, X.F.,Wu, J.Q.,Lu, X.Q.Retrieval of Chinese Calligraphic Character Image[].Proc Pacific Rim Conf on Multimedia.2004 被引量:1
  • 9Ben-Hur A,,David Horn,Siegelmann H T,et al.Support Vector Clustering[].Journal of MachineLearning Research.2001 被引量:1
  • 10Vin de Silva,Joshua B Tenenbaum.Sparse Multidi mensional Scaling using Landmark Points. Technical Report CA94305-2125 . 2004 被引量:1

共引文献22

同被引文献53

  • 1Kennedy L S, Chang S F, Kozintsev I V. To search or to label: Predicting the performance of search-based automatic image classifiers[C]// Proceedings of the 14th ACM International Workshop on Multimedia Information Retrieval. 2006:249-258. 被引量:1
  • 2Sigurbjrnsson B, Zwol van R. Flickr tag recommendation based on collective knowledge[C]// Proceedings of the 17th International Conference on World Wide Web. 2008:327-336. 被引量:1
  • 3Liu Dong, Hua Xian-Sheng, Zhang Hong-Jiang. Content-based tag processing for Internet social images[J]. Multimedia Tools and Applications, 2011,51(2):723-738. 被引量:1
  • 4Liu B. Web Data Mining: Exploring Hyperlinks, Contents and Usage Data[M]. Springer, 2006. 被引量:1
  • 5Leydesdorff L, Vaughan L. Co-occurrence matrices and their applications in information science: Extending ACA to the Web environment[J]. Journal of the American Society for Information Science and Technology, 2006,57(12):1616-1628. 被引量:1
  • 6Liu Dong, Hua Xian-Sheng, Yang Linjun, et al. Tag ranking[C]// Proceedings of the 18th International Conference on World Wide Web. 2009:351-360. 被引量:1
  • 7Lu Y, Zhang L, Tian Q, et al. What are the high-level concepts with small semantic gaps?[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8. 被引量:1
  • 8Liu J S. Monte Carlo Strategies in Scientific Computing[M]. Berlin: Springer, 2002. 被引量:1
  • 9Wang Z, Feng H, Zhang C, et al. Learning to rank tags[C]// Proceedings of the ACM International Conference on Image and Video Retrieval. 2010:42-49. 被引量:1
  • 10赵英海,查正军,李珊珊,等. 基于视觉内容语义相关度的图像标签自动排序方法[J]. 中国科技大学学报, 2011,41(2):108-115. 被引量:1

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部