期刊文献+

LDA主题模型 被引量:17

Latent Dirichlet Allocation Topic Model
下载PDF
导出
摘要 在自然语言处理领域,LDA主题模型是进行文本语义挖掘的一种统计模型,用来发现文档中的隐含主题,将词项空间表达的文档约简为主题空间的低维表达,实现信息检索、文本分类等。本文阐述了LDA模型的文档生成过程、LDA模型的图模型表示、基于LDA的扩展模型以及未来的研究趋势。 In natural language processing, LDA (Latent Dirichlet Allocation) topic model is a probabilistic model in text semantic mining. LDA is a dimensionality reduction technique to reduce a document represented by words to a random mix- ture over latent topics, and to realize information retrieval and text categorization. The paper presents the generative process for each document in a corpus and the graphical model representation of LDA. Based on the aboved, the paper also discusses the extended model associated with LDA and the future research trend.
作者 邹晓辉 孙静
出处 《智能计算机与应用》 2014年第5期105-106,共2页 Intelligent Computer and Applications
关键词 自然语言处理 主题模型 Natural Language Processing Topic Model LDA
  • 相关文献

参考文献2

二级参考文献63

  • 1Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990. 被引量:1
  • 2Hofmann T. Probabilistic latent semantic indexing//Proceedings of the 22nd Annual International SIGIR Conference. New York: ACM Press, 1999:50-57. 被引量:1
  • 3Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022. 被引量:1
  • 4Griffiths T L, Steyvers M. Finding scientific topics//Proceedings of the National Academy of Sciences, 2004, 101: 5228 5235. 被引量:1
  • 5Steyvers M, Gritfiths T. Probabilistic topic models. Latent Semantic Analysis= A Road to Meaning. Laurence Erlbaum, 2006. 被引量:1
  • 6Teh Y W, Jordan M I, Beal M J, Blei D M. Hierarchical dirichlet processes. Technical Report 653. UC Berkeley Statistics, 2004. 被引量:1
  • 7Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B39(1): 1-38. 被引量:1
  • 8Bishop C M. Pattern Recognition and Machine Learning. New York, USA: Springer, 2006. 被引量:1
  • 9Roweis S. EM algorithms for PCA and SPCA//Advances in Neural Information Processing Systems. Cambridge, MA, USA: The MIT Press, 1998, 10. 被引量:1
  • 10Hofmann T. Probabilistic latent semantic analysis//Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden, 1999:289- 296. 被引量:1

共引文献246

同被引文献220

引证文献17

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部