期刊文献+

一种基于综合特征评估的运动目标跟踪算法 被引量:5

An effective object tracking algorithm based on combined feature evaluation
下载PDF
导出
摘要 提出一种基于在线综合直方图特征评估的运动目标跟踪算法.首先,通过融合颜色直方图和梯度方向直方图,形成一种新的综合直方图特征集,在物体的表达过程中有效融合和强化物体的颜色和轮廓描述;其次,为了实现长时间的稳定跟踪以及适应跟踪过程中物体和背景的连续变化,提出了一种新的跟踪物体权值评估算法,使可信特征在跟踪中起到更大的作用.复杂背景下的实验验证了该算法的有效性. An online combined feature evaluation method for visual object tracking was proposed. FirstLy, a feature set was built by combining color histogram (HC) bins with gradient orientation histogram (HOG) bins, emphasizing the color and contour representation. Then a feature confidence evaluation approach was proposed to make features of larger confidences play more important roles in tracking, which ensured that the tracking could adapt to the appearance changes of either foreground or background. Experiment results verify the effectiveness and efficiency of the proposed method when objects go across complicated backgrounds.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第5期491-495,共5页 JUSTC
基金 国家自然科学基金(60672147)资助
关键词 特征评估 综合直方图 目标跟踪 feature evaluation combined feature histogram object tracking
  • 相关文献

参考文献10

  • 1Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1999,2:246-252. 被引量:1
  • 2Bradski G R.Real time face and object tracking as a component of a perceptual user interface[C] //Proceedings of 4th IEEE Workshop on Applications of Computer Vision.Princeton,New Jersey:IEEE Press,1998:214-219. 被引量:1
  • 3Cuevas E,Zaldivar D,Rojas R.Kalman filter for vision tracking[R].Technical Report B,Fachbereich Mathematikund Informatik,Freie Universit(a)t,Berlin,2005. 被引量:1
  • 4Dalal N,Triggs B.Histograms of oriented gradients for human detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society,2005:886-893. 被引量:1
  • 5Nguyen H,Smeulders A W M.Tracking Aspects of the Foreground against the background[C] //Proceedings of European Conference on Computer Vision.Prague:Springer,2004,2:446-456. 被引量:1
  • 6Wang J,Chen X,Gao W.Online selecting discriminative tracking features using particle filter[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Press,2005,2:1 037-1 042. 被引量:1
  • 7Collins R T,Liu Y X,Leordeanu M.Online selection of discriminative tracking features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1 631-1 643. 被引量:1
  • 8Liang D W,Huang Q M,Gao W,et al.Online selection of discriminative features using Bayes error rate for visual tracking[C] //7th Pacific-Rim Conference on Muhimedia.Hangzhou:Springer,2006:547-555. 被引量:1
  • 9Vivid tracking evaluation[EB/OL].http://www.vividevaluation.ri.cmu.edu/clatasets/datasets.html. 被引量:1
  • 10Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-575. 被引量:1

同被引文献28

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部