期刊文献+

融合结构信息的粒子滤波均值偏移跟踪算法 被引量:9

Fusion of Structural Information in Object Tracking Using Particle Filter and Mean Shift
下载PDF
导出
摘要 粒子的退化现象是粒子滤波算法中不容忽视的问题,在算法实现过程中需要考虑如何权衡粒子数和实时跟踪.提出一种结合粒子滤波和均值偏移2种算法的改进跟踪算法,只需要4个采样粒子,4个粒子通过均值偏移的方法收敛到局部最大值位置点,通过粒子加权的方式得到目标最终的位置.与传统的粒子滤波算法相比,该算法的计算复杂度大大降低,同时融合了结构信息这一特征,弥补了颜色信息的不足.由于文中算法的粒子总是能收敛到局部的极值,几乎不会出现退化现象,故无需进行重采样和粒子权值的更新.实验结果表明,该算法能在复杂背景下实现对目标的稳健跟踪,满足跟踪的实时性要求. An inherent problem with particle filter is the so-called particle degeneracy, i. e. , now to balance the number of the particles and real-time tracking is a critical issue to consider. This paper presents an improved tracking algorithm by combining particle filter and mean shift. In our algorithm, only four particles are used and each one of them can converge to a local maximum. The final target position is a combination of weighted particles. The computational complexity decreased sharply in comparison with the conventional particle filtering. In addition, structural information is also employed to compensate for the insufficiency of pure color information. Because each particle can always converge to a local maximum, the particle degeneracy can rarely happen, as a result, the resampling and particle update steps are not used in our implementation. Experimental results show that our algorithm can robustly track the target even in cases where the color of tracked target is similar to that of the background, and it can also meet the demand of real-time tracking.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第12期1583-1589,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 四川省科技厅应用基础研究项目(2008ly0115-2) 四川省教育厅重点资助项目(2006A097) 国防基础科研项目(C1020060355)
关键词 粒子滤波 均值偏移 融合 结构信息 particle filter mean-shift fusion structural information
  • 相关文献

参考文献11

  • 1Nummiaro K, Koller Meier E, Van Gool L. An adaptive color based particle filter [J]. Image and Vision Computing, 2003, 21(1): 99-110. 被引量:1
  • 2Loza A, Mihaylova L, Canagarajah N, et al. Structural similarity-based object tracking in video sequences [C] // Proceedings of the 9th International Conference on Information Fusion, Florence, 2006:1-6. 被引量:1
  • 3Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188. 被引量:1
  • 4Comaniciu D, Ramesh V, Meer P. Kernel based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 5Gordon N J, Salmond D J, Smith A F M. Novel approach to non-linear and non-Gaussian Bayesian state estimation [J]. lEE Proceedings F Radar & Signal Processing, 1993, 140 (2):107-113. 被引量:1
  • 6Carpenter J, Clifford P, Fearnhead P. Improved particle filter for nonlinear problems[J]. IEE Proceedings of Radar, Sonar & Navigation, 1999, 146(1): 2-7. 被引量:1
  • 7Julier S, Uhlmann J, Durrant Whyte H F. A new method for nonlinear transformation of means and covariance in filters and estimators [J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482. 被引量:1
  • 8Shan C F, Wei Y C, Tan T N, et al. Real time hand tracking by combining particle filtering and mean shift [C] // Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, 2004: 669- 674. 被引量:1
  • 9张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 10Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles [J]. Proceedings of the IEEE, 2004, 92(3): 495-513. 被引量:1

二级参考文献8

  • 1Michael Isard,Andrew Blake.CONDENSATION—Conditional Density Propagation for Visual Tracking[J].International Journal of Computer Vision.1998(1) 被引量:1
  • 2D. Comaniciu,V. Ramesh,and P. Meer. IEEE Trans. Patt. Analy. and Mach. Intell . 2003 被引量:1
  • 3M. S. Arulampalam,S. Maskell,,N. Gordon,and T. Clapp. IEEE Transactions on Signal Processing . 2002 被引量:1
  • 4K. Nummiaro,,E. Koller-Meier,and L. V. Gool. Image and Vision Computing . 2003 被引量:1
  • 5C. Shan,Y. Wei,T. Tan,and F. Ojardias. The Proceedings of 6th International Conference on Automatic Face and Gesture Recognition ( . 2004 被引量:1
  • 6E. Maggio,and A. Cavallaro. Proceedings of IEEE Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing . 2005 被引量:1
  • 7S. Birchfield. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1998 被引量:1
  • 8P. Li,T. Zhang,and A. E. C. Pece. Image and Vision Computing . 2003 被引量:1

共引文献11

同被引文献87

  • 1苗启广,王宝树.图像融合的非负矩阵分解算法[J].计算机辅助设计与图形学学报,2005,17(9):2029-2032. 被引量:22
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3Nummiaro K,Roller-Meier E,Van Gool L.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110. 被引量:1
  • 4Dalai N,Triggs B.Histograms of oriented gradients for human detection[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:886-893. 被引量:1
  • 5Birchfield S T,Rangarajan S.Spatiograms versus histograms for region-based tracking[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:1158-1163. 被引量:1
  • 6Han B,Comaniciu D,Zhu Y,et al.Sequential kernel density approximation and its application to real-time visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7):1186-1197. 被引量:1
  • 7Lim J,Ross D,Lin R S,et al.Incremental learning for visual tracking[C] //Proceedings on Advances in Neural Information Processing Systems.Columbia:MIT Press,2005:793-800. 被引量:1
  • 8Porikli F.Integral histogram:a fast way to extract histograms in Cartesian spaces[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:829-836. 被引量:1
  • 9Shlens J.A tutorial on principal component analysis[OL].[2009-05-13].http://www.cs.cmu.edu /-elaw/ papers/pca.pdf. 被引量:1
  • 10Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non -Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188. 被引量:1

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部