期刊文献+

一种带重采样控制器的IMM-AUPF算法 被引量:4

An IMM-AUPF algorithm with a re-sampling controller
原文传递
导出
摘要 为了减轻粒子滤波计算复杂性,提出了一种基于交互式多模型(IMM)架构的自适应Unscented粒子滤波算法(AUPF)。IMM-AUPF算法在粒子滤波重采样步骤中设计了一个重采样控制器,根据滤波性能在线调节重采样粒子的数量。并将自适应粒子滤波算法应用于交互式多模型估计方法中,有效地解决了地面机动目标跟踪问题。实验结果表明:基于粒子滤波的多模型滤波器在估计精度方面优于标准的交互式多模型滤波器,且IMM-AUPF算法在计算复杂性方面优于交互式多模型Unscented粒子滤波算法。 An adaptive unscented particle filter (AUPF) based on the interacting multiple model (IMM) frame was developed to curtail the computational complexity of particle filters. According to some filtering performance,the algorithm designs a re-sampling controller in the re-sampling step to tune online the number of re-sampling particles in each model. The IMM-AUPF,combining the adaptive unscented particle filter with the interacting multiple model estimator,efficiently addresses the ground maneuvering target tracking problem. Simulations show that particle filter-based filters outperform IMM-based filters in terms of the estimation accuracy and that the IMM-AUPF behaves better than the interacting multiple model unscented particle filter in terms of the computational complexity.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期539-542,共4页 Journal of Tsinghua University(Science and Technology)
基金 国防"十一五"预研计划项目(102060310) 总装预研基金项目(402040502)
关键词 自适应Unscented粒子滤波 重采样控制器 交互式多模型 adaptive unscented particle filter re-sampling controller interacting multiple model
  • 相关文献

参考文献13

  • 1HONG Lang, CUI Ningzhou, Bakich M, et al. Multirate interacting multiple model particle filter for terrain-based ground target tracking [J]. IEE Proceedings-Control Theory and Applications, 2006, 153(6) : 721 - 731. 被引量:1
  • 2Chong C, Garren D, Grayson T P. Ground target tracking-A historical perspective [C]//Proceedings of the IEEE Aerospace. USA: Big Sky, MT, 2000:433-448. 被引量:1
  • 3CUI Ningzhou, HONG Lang, Layne J R. A comparison of nonlinear filtering approaches with an application to ground target tracking [J]. Signal Processing, 2005, 85(8): 1469- 1492. 被引量:1
  • 4Bar-Shalom Y, Challa S, Blom H A P. IMM estimator versus optimal estimator for hybrid systems [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3) :986 - 991. 被引量:1
  • 5Gordon N J, Slamond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proc of the Radar and Signal Processing, 1993, 140(2): 107 - 113. 被引量:1
  • 6Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems [C]//Proc of AeroSense: 11th Int Symp Aerospace/Defense Sensing, Simulation and Controls. Florida: ISADSC, 1997.. 54-65. 被引量:1
  • 7van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D]. Portland, OR: Oregon Health Sci Univ, 2004. 被引量:1
  • 8Boers Y, Driessen J N. Interacting multiple model particle filter[J]. IEE Proc Radar Sonar Navig, 2003, 150(5): 344 - 349. 被引量:1
  • 9GUO Rong-hua,QIN Zheng.An unscented particle filter for ground maneuvering target tracking[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(10):1588-1595. 被引量:6
  • 10McGinnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3) : 1006 - 1012. 被引量:1

二级参考文献10

  • 1Bar-Shalom, Y,Li, X.R.Estimation and Tracking: Principles, Techniques, and Software[]..1993 被引量:1
  • 2Bar-Shalom, Y,Challa, S,Blom, H.A.P.IMM esti-mator versus optimal estimator for hybrid systems[].IEEE Trans on Aeros Electron Syst.2005 被引量:1
  • 3Chong, C.Y,Garren, D,Grayson, T.P.Ground Target Tracking—A Historical Perspective[].Proc IEEE Aero-space Conf.2000 被引量:1
  • 4Farina, A,Ristic, B.Tracking a ballistic target: com-parison of several nonlinear filters[].IEEE Trans on Aeros Electron Syst.2002 被引量:1
  • 5Hong, L,Cui, N,Bakich, M,Layne, J.R.Multirate interacting multiple model particle filter for terrain-based ground target tracking[].IEE Proc-Control Theory and Applications.2006 被引量:1
  • 6Julier,S.J.The Scaled Unscented Transformation[].Proc American Control Conf.2002 被引量:1
  • 7Kirubarajan, T,Bar-Shalom, Y,Pattipati, K.R.Track-ing Ground Targets with Road Constraints Using an IMM Estimator[].IEEE Proc on Aerospace Conf.1998 被引量:1
  • 8Kreucher, C,Kastella, K.Multiple-model Nonlinear Filtering for Low-signal Ground Target Applications[].Signal Processing Sensor Fusion and Target Recognition X Proc SPIE.2001 被引量:1
  • 9Musso, C,Oudjane, N,Legland, F.Improving Regu-larized Particle Filters[].Sequential Monte Carlo Methods in Practice.2001 被引量:1
  • 10Press, W.H,Teukolsky, S.A,Vetterling, W.T,Flannery, B.P.Numerical Recipes in C: The Art of Scientific Computing[]..1992 被引量:1

共引文献5

同被引文献28

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部