摘要
针对复合K噪声干扰下目标跟踪系统中出现的强非线性非高斯问题,在给出一种复合K噪声统计模型的基础上,提出将容积粒子滤波(CPF)与无迹粒子滤波(UPF)两种算法应用在典型目标跟踪系统中,并对算法的跟踪性能进行了仿真分析。实验结果表明,CPF,UPF两种算法均能有效跟踪复合K噪声下的运动目标;其中,CPF算法表现出更高的跟踪精度和更好的实时性,且具有更低的算法设计复杂度。
Aimed at the strong nonlinear and non-Gaussian problems of target tracking system under compound K noise jamming, the Cubature Particle Filter( CPF) algorithm and Unscented Particle Filter( UPF) algorithm are applied in typical target tracking systems based on the compound K noise statistical model, and the tracking performance of the algorithm are analyzed through simulation. The experimental results illustrate that: 1) Both the CPF and UPF algorithms have good performance in tracking moving target under condition with compound K noise; and 2) Compared with UPF, the CPF has higher tracking accuracy,better real-time performance, and lower complexity in the algorithm design.
出处
《电光与控制》
北大核心
2016年第5期1-5,共5页
Electronics Optics & Control
基金
国家自然科学基金(61203007)
关键词
目标跟踪
容积粒子滤波
无迹粒子滤波
非线性非高斯
复合K噪声
target tracking
Cubature Particle Filter(CPF)
Unscented Particle Filter(UPF)
nonlinear non-Gaussian
compound K noise