期刊文献+

关于p-laplace方程组正解的存在性

Existence of Positive Solution to p-Laplace System
下载PDF
导出
摘要 主要考察一类带有Dirichlet边界条件的p-Laplace非线性椭圆型方程组正解的存在性.由于所考察的p-Laplace方程组具有对称性.首先,利用山路引理求解相应方程的形式解,并验证了解的正性,进而得到原方程组正的上解;其次,在所构造的方程组上下解区间上,通过解耦系统构造合适的映射,最终利用Leray-Schauder不动点定理,得到p-Laplace方程组正解的存在性. The existence of positive solutions to p-Laplace nonlinear elliptic system with Dirichlet boundary conditions is investigated.First,with the symmetry of the p-Laplace system and Mountain Pass Theorem,the form solution to the corresponding single equation of the original system is obtained and its positiveness is proved.The positive sup-solution to the original system is obtained.Second,the appropriate mapping is structured with the solution to decoupled system in the intervals of sub-super solutions.Finally,with the Leray-Schauder's fixed point theorem,the existence of positive solutions is obtained.
作者 祁瑞改 闫冰
出处 《河北北方学院学报(自然科学版)》 2010年第2期6-10,共5页 Journal of Hebei North University:Natural Science Edition
基金 河南省教育厅项目(2009B110009) 河南理工大学研究生学位论文创新基金(2008-M-29)
关键词 p-Laplace方程组 上下解 不动点 p-Laplace system sub-super solutions fixed point
  • 相关文献

参考文献10

  • 1潘爱林,王家正.一类半线性抛物型方程的非协调有限元法[J].河北北方学院学报(自然科学版),2009,25(1):1-3. 被引量:1
  • 2祁瑞改,杨国英.用上下解方法证明p-Laplace方程组正解的存在唯一性[J].杭州师范大学学报(自然科学版),2009,8(4):265-267. 被引量:2
  • 3远方.一类反应扩散方程的锐利条件[J].河北北方学院学报(自然科学版),2008,24(A03):8-9. 被引量:2
  • 4Clément PH,Fleckinger J,Mitidieri E,et al.Existence of positive solutions for quasilinear elliptic systems[J].Differ Equat,2000,166:455-477. 被引量:1
  • 5Bozhkov Y,Mitidieri E.Existence of multiple solutions for quasilinear systems[J].Differ Equat,2003,190:239-267. 被引量:1
  • 6Hernández J.Positive solutions for the logistic equation with unbounded weights[R].Lecture Notes in Pure and Applied Mathematics[C].New York:Dekker,1998:183-197. 被引量:1
  • 7Huang XY.A note on asymptotic behavior of positive solution for some elliptic equations[J].Nonlin Anal Theory Methods Appl,1997 29(05):533-537. 被引量:1
  • 8Kavian O.Introduction à la théorie des points critiques[M].Berlin:Springer,1993:27-96. 被引量:1
  • 9Bechah A,Chaǐb K,Thélin Fde.Existence and uniqueness of positive solutions for subhomogeneous elliptic problems[J].Rev Mat Apl,2001,21(1-2):1-18. 被引量:1
  • 10Drábek P,Kufner A,Nicolosi F.Quasilinear elliptic equations with degenerations and singularities[J].Nonlin Anal Appl,1997,(05):263-278. 被引量:1

二级参考文献14

  • 1刘亚成,徐润章.半线性拟抛物方程的整体W^(k,p)(k≥3,1<p<∞)解与古典解[J].哈尔滨工程大学学报,2005,26(2):277-279. 被引量:7
  • 2Vider T.Galerkin Finite Element Methods for Parabolic Problems[M].Berlin-Heidelburg:Springer-verlag,2003:223-225. 被引量:1
  • 3Tong S,Daria F.Long-time error estimation for semi-linear parabolic equations[J].J Comput App Math,2006,185:1-18 被引量:1
  • 4Javier F,Bosco G A,Julia N.A posteriori error estimates for fully discrete nonlinear parabolic problems[J].Comput Methods Appl Mech Engrg,2007,196:3462-3474 被引量:1
  • 5王健.抛物型方程半离散解的最优误差估计[J].通化师范学院学报,2007,28(2):13-15. 被引量:1
  • 6R.D.库克.有限元分析的概念和应用[M].北京:科学出版社,1989. 被引量:3
  • 7Yihong Du,Zongming Guo. Boundary blow-up solutions and their applications in quasilinear elliptic equations[J] 2003,Journal d’Analyse Mathématique(1):277~302 被引量:1
  • 8Henri Berestycki,Italo Capuzzo-Dolcetta,Louis Nirenberg. Variational methods for indefinite superlinear homogeneous elliptic problems[J] 1995,Nonlinear Differential Equations and Applications NoDEA(4):553~572 被引量:1
  • 9Kwong M K,,Zhang L Q.Uniqueness of the positive so-lution of in an Annulus[].Differential and Integral Equations.1991 被引量:1
  • 10Ladyzenskaja O A,Solonnikov V A,Ural‘ceva N N.Lin-ear and Quasilinear Equations of Parabolic Type[]..1986 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部