期刊文献+

一类p(x)-Laplace方程组径向解的存在性 被引量:1

Existence Results of Radial Solutions for a Class of p(x)-Laplacian Systems
下载PDF
导出
摘要 讨论了一类p(x)-Laplace方程组解的存在性,在一定条件下,利用锥不动点定理,证明了单位球上p(x)-Laplace方程组存在正径向解,把H.Wang关于p-Laplace方程组的结果推广到了p(x)-Laplace方程组. This paper deals with the existence of solutions for p(x) -Laplacian system. Under some given conditions, we prove that the problem has a positive radial solution in the unit ball through fixed-point theorem in a cone. The result generalized the p-Laplacian system of H. Wang to the p(x) -Laplacian system.
出处 《河北工业大学学报》 CAS 2008年第2期56-59,共4页 Journal of Hebei University of Technology
关键词 p(x)-Laplace方程组 存在性 锥不动点定理 径向解 p(x) -Laplacian system existence fixed-point theorem in a cone radial solution
  • 相关文献

参考文献9

  • 1Wang H. On the number of positive solutions of nonlinear systems [J]. J Math Analysis Applic, 2003, 281: 287-306. 被引量:1
  • 2Wang H. An existence theorem for quasilinear systems [J]. Proceedings of the Edinburgh Mathematical Society, 2006, 49: 505-511. 被引量:1
  • 3Lions P L. On the existence of positive solutions of semilinear elliptic equations [J]. SIAM Rev, 1982, 24: 441-467. 被引量:1
  • 4Joseph D D, Lundgren T S. Quasilinear Dirichlet problems driven by positive sources [J]. Arch Ration Mech Analysis, 1972, 49: 241-269. 被引量:1
  • 5Figueiredo D G DE, Lions P, Nussbaum R D. A priori eatimates and existence of positive solutions ofsemilinear elliptic equations [J]. J Math Pures Appl, 1982, 61: 41-63. 被引量:1
  • 6Guo D, Lakshmikantham V. Nonlinear problems in abstract cones [M]. Orlando, FL: Academic Prees, 1988. 被引量:1
  • 7Wang H. On the existence of positive solutions for semilinear elliptic equations in the annulus [J]. J Diff Eqns, 1994, 109: 1-7. 被引量:1
  • 8Wang H. On the structure of positive radial solutions for quasilinear equations in annular domains [J]. Adv Diff Eqns, 2003, 8:111-128. 被引量:1
  • 9Deimling K. Nonlinear functional analysis [M]. Berlin.. Springer, 1985. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部