期刊文献+

基于人工免疫算法的最小二乘支持向量机参数优化算法 被引量:8

Method for optimizing parameters of least squares support vector machine based on artificial immune algorithm
下载PDF
导出
摘要 针对最小二乘支持向量机(LSSVM)处理大数据集时确定最优模型参数耗时长、占内存大的问题,提出了一种基于人工免疫算法的参数寻优方法。通过分析LSSVM模型参数对分类准确率的影响发现,存在多种参数组合,使得分类准确率相同;当其中一个参数固定,另外一个参数在某些范围内变化取值时,它们的组合并不影响分类的准确率。将LSSVM模型参数作为抗体的基因设计了抗体的编码方案,利用人工免疫算法对LSSVM参数优化搜索。仿真结果表明,与使用交叉验证和网格搜索方法相比,提出的LSSVM参数优化算法在不降低分类准确率的前提下,寻优效率大大提高。 To reduce training time of least squares support vector machine (LSSVM) on large datasets,this paper presented a novel algorithm for selecting LSSVM optimal parameters which was based on principle of artificial immune. By analyzing LSSVM parameters on the classification accuracy rate,it was found that the existence of many parameters combinations which made the same classification accuracy rate.What’s more,once one of the parameters fixed and the other changed in a certain range, the combinations of them didn’t affect the classification accuracy rate.By making LSSVM parameters as antibody genes,this paper designed reasonable coding scheme for these antibodies.Then employed artificial immune algorithm to search the optimal parameters of LSSVM.Simulation results show that the proposed algorithm greatly enhance parameters optimizing efficiency while keeping the same classification accuracy rate comparing with the method of cross-validation or grid- search.
作者 杨福刚
出处 《计算机应用研究》 CSCD 北大核心 2010年第5期1702-1704,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60673153 60970105) 山东省自然科学基金资助项目(Y2007G22)
关键词 人工免疫算法 最小二乘支持向量机 参数优化 artificial immune algorithm least squares support vector machines parameters optimization
  • 相关文献

参考文献10

  • 1SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Nural Processing Letters,1999,9(3):293-300. 被引量:1
  • 2任勋益,王汝传,谢永娟.基于支持向量机和最小二乘支持向量机的入侵检测比较[J].计算机科学,2008,35(10):83-85. 被引量:7
  • 3SUYKENS J A K,GESTEL T van,De BRABANTER J,et al.Least squares support vector machines[M].Singapore:World Scientific,2002:102-198. 被引量:1
  • 4AN Sen-jian,LIU Wan-quan,VENKATESH S.Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J].Pattern Recognition,2007,40(8):2154-2163. 被引量:1
  • 5KOGGALAGE R,HALGAMUGE S.Reducing the number of training samples for fast support vector machine classification-letters and reviews[J].Neural Information Processing,2004,2(3):53-56. 被引量:1
  • 6郭辉,刘贺平,王玲.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报,2006,18(7):2033-2036. 被引量:103
  • 7CASTRO D E,ZUBEN V.Artificial immune systems,part Ⅰ:basic theory and application[R].Campinas:State University of Campinas,1999. 被引量:1
  • 8DASGUPTA D.Artificial immune systems and their applications[M].New York:Springer-Verlag,1999:45-87. 被引量:1
  • 9ASUNCION A,NEWMAN D J.UCI machine learning repository[EB/OL].[2007-07].http://www.ics.uci.edu/-mlearn/MLRepository.html. 被引量:1
  • 10CHANG C C,LIN C J.LIBSVM:a library for support vector machines[EB/OL].[2007-07].http://www.csie.ntu.edu.tw/-cjlin/libsvm. 被引量:1

二级参考文献18

  • 1Vapnik V. The nature of statistical learning theory [ M ]. New York: Springer- Verlag, 19 9 5 被引量:1
  • 2Burges C. A tutorial on support vector machines for pattern rec - ognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121-167 被引量:1
  • 3Suykens J A K , Vandewalle J. Least Squares Support Vector Machine Classifiers [J]. Neural Processing Letters (S1370- 4621), 1999,9(3) :293-300 被引量:1
  • 4Suykens J A K. LS-SVMIab Toolbox User's Guide [EB/OL]. http://www, esat. kuleuven, ac. be/sista/lssvmlab/ 被引量:1
  • 5http://kdd, its. uci. edu/databases/kddcup99/task.htm 被引量:1
  • 6Lin Chihjen. LIBSVM:a library for SVMs (Version 2. 6) [DB/OL]. http://www, csie. ntu. edu. tw/-cilin/papers/libsvm.pdf 被引量:1
  • 7Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 1997,30 (7) : 1145-1159 被引量:1
  • 8Vapnik V N.Statistical learning theory[M].New York:1995. 被引量:1
  • 9Burges CJC.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. 被引量:1
  • 10Johan Suykens A K.Nonlinear Modeling and Support Vector Machines[C]//IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001. 被引量:1

共引文献108

同被引文献103

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部