期刊文献+

利用改进的遗传算法优化产品性能参数模型

Optimizing the Parameter Model of Product PerformanceBased on Improved Genetic Algorithm
下载PDF
导出
摘要 借鉴机械优化设计的思想,以总费用为目标函数、以零件参数(标定值和容差等级)为自变量,建立产品性能参数模型,并提出了一种改进的遗传算法。该算法运用了随迭代次数变化的变异概率、自适应变化的交叉概率以及结合赌轮算法的精英选择策略。仿真试验证明,改进的遗传算法不但在收敛速度和搜索能力上优于简单的遗传算法,而且能够较好地避免局部最优,是较好的大规模参数寻优方法。 Learn from the design concept of mechanical optimal, with the total cost as the object function, and the part parameters ( scaling values and tolerance levels ) as independent variables, the parameter model of the product performance is established, and the improved genetic algorithm is proposed. In this algorithm, the mutation probability changing follows the variation of numbers of iterations, the adaptive crossover probability, as well as the elitist selection strategy combining roulette wheel algorithm are adopted. The simulation experiments verify that the improved genetic algorithm is better than the simple genetic algorithm upon convergence speed and searching capability, and effectively avoid local optimization; it is an excellent method for large-scale parameter optimization.
出处 《自动化仪表》 CAS 北大核心 2013年第3期17-20,共4页 Process Automation Instrumentation
基金 华侨大学科研基金资助项目(编号:11HZR02)
关键词 参数模型 优化设计 遗传算法 交叉概率 变异概率 非线性规划 Parameter model Optimal design Genetic algorithm Crossover probability Mutation probability Nonlinear programming
  • 相关文献

参考文献10

  • 1Holland J. Adaptation in neural and artificial systems [ M ]. Ann Arbor: Michigan University, 1975. 被引量:1
  • 2张文修,梁怡编著..遗传算法的数学基础 第2版[M].西安:西安交通大学出版社,2003:170.
  • 31997年全国大学生数学建模竞赛(A题)[J].数学的认识与实践,1998(1):2-4. 被引量:1
  • 4赵静,但琦主编..数学建模与数学实验[M].北京:高等教育出版社;施普林格出版社,2000:280.
  • 5吴新烨,徐学林.在零件的参数优化设计中的数学建模[J].煤矿机械,2004,25(1):10-12. 被引量:1
  • 6Filho J L R,Treleaven P C, Alippi C. Genetic algorithm prograrmning environments [ J ]. IEEE Computer, 1994,27 (6) :28-43. 被引量:1
  • 7熊军,高敦堂,都思丹,沈庆宏.变异率和种群数目自适应的遗传算法[J].东南大学学报(自然科学版),2004,34(4):553-556. 被引量:22
  • 8Pan Zhengjun, Kang Lishan, Nie Sixiang. Evolving both the topology and weights of neural network [ J ]. Parallel Algorithms and Applications, 1996,9 (3) :299-307. 被引量:1
  • 9王小平 曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2003.. 被引量:45
  • 10雷英杰 ... ..MATLAB遗传算法工具箱及应用[M],2005.

二级参考文献10

  • 1Eiben A E,Hinterding R,Michalewicz Z.Parameter control in evolutionary algorithms[J].IEEE Trans on Evolutionary Computation,1999,3(2):124-141. 被引量:1
  • 2de Jong K A.An analysis of the behavior of a class of genetic adaptive systems[D].USA:University of Michigan,1975. 被引量:1
  • 3Grefenstette J J.Optimization of control parameters for genetic algorithms[J].IEEE Trans on Systems,Man and Cybernetics,1986,16(1):122-128. 被引量:1
  • 4Pham Q T.Competitive evolution:a natural approach to operator selection[A].In:Yao X,ed.Progress in Evolutionary Computation,Lecture Notes in Artificial Intelligence [C].Heidelberg:Springer-Verlag,1995.49-60. 被引量:1
  • 5Lis J.Parallel genetic algorithm with the dynamic control parameter[A].In:Proceedings of the 3rd IEEE Conference on Evolutionary Computation [C].Nagoya:IEEE Press,1996,324-329. 被引量:1
  • 6Deb K,Agrawal S.Understanding interactions among genetic algorithm parameters[A].In:Banzhaf W,Reeves C,eds.Foundations of Genetic Algorithms 5[C].San Francisco:Morgan Kauffman,1998.265-286. 被引量:1
  • 7Harik G R,Cantú-Paz E,Goldberg D E,et al.The gambler's ruin problem,genetic algorithms and the sizing of populations[A].In:Back T,ed.Proceeding of the 4th International Conference on Evolutionary Computation [C].New York:IEEE Press,1997.7-12. 被引量:1
  • 8Kauffman S A.Origins of order[M].Oxford:Oxford University Press,1993.33-69 被引量:1
  • 9Weinberger E D.NP completeness of Kauffman's NK model,a tunable rugged fitness landscape[R].New Mexico:Santafe Institute Technical Report 96-02-003,1996. 被引量:1
  • 10袁晓辉,曹玲,夏良正.Adaptive genetic algorithm with the criterion of premature convergence[J].Journal of Southeast University(English Edition),2003,19(1):40-43. 被引量:9

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部