期刊文献+

基于遗传算法的支持向量机时间序列预测模型优化 被引量:33

Optimizing of support vector machine time series forecasting model parameters based on genetic algorithms
下载PDF
导出
摘要 建立在统计学习理论和结构风险最小原则上的支持向量机在理论上保证了模型的最大泛化能力,因此与建立在经验风险最小原则上的神经网络模型相比,理论上更为完善。本文运用支持向量机建立时间序列预测模型,研究影响模型预测精度的相关参数,在分析参数对时间序列预测精度的影响基础上,提出用遗传算法建立支持向量机预测模型的参数自适应优化算法。最后,用算例表明了本文算法的正确性和有效性。 Support Vector Machine (SVM) is based on Statistical Learning Theory (SLT) and Structural Risk Minimization Principle (SRM), and theoretically assures best model generalization. Therefore, it is more perfect in theory than Artificial Neural Network (ANN) that is based on Empirical Risk Minimization Principle (ERM). In this paper, SVM is used to establish time series forecasting model, study the parameters that influence forecasting accuracy. On the basis of analyzing model parameters' influence, a self-adaptive optimizing algorithm for establishing the model parameters based on genetic algorithm is put forward. In the end, examples showing the correctness and validity of the proposed algorithm are given.
作者 陈果
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第9期1080-1084,共5页 Chinese Journal of Scientific Instrument
关键词 支持向量机 时间序列分析 预测 遗传算法 优化 support vector machine (SVM) time series analysis forecasting genetic algorithm optimizing
  • 相关文献

参考文献10

  • 1杨叔子等著..时间序列分析的工程应用 上[M].武汉:华中理工大学出版社,1991:395.
  • 2FARBER L A. Nonlinear signal processing using neural network.. Prediction and system modeling [R].Technical Report LA-UR-87-2662, I.os Alamos National Laboratory. Los Alamos. NM, 1987. 被引量:1
  • 3WEIGEND A B. Predicting the future: a connectionist approach [J]. International Journal of Neural System,1990(1) : 193-209. 被引量:1
  • 4VAPNIK V. The nature of statistical learning [M].New York: Springer, 1995. 被引量:1
  • 5TAY F E H , Cao L J. Application of support vector machines in financial time series forecasting [J]. Omega, 2001, 29: 309-317. 被引量:1
  • 6尉询凯 李应红 王硕 等.基于支持向量机的航空发动机滑油监控分析[J].航空动力学报,2003,18(6):393-397. 被引量:1
  • 7FORD J. Chaos at randorn[J]. Natrue, 1983, 305(20) : 17-24. 被引量:1
  • 8TAKENS F. Detecting strange attractors in turbulence[C]. In: Rand, D. A., Young, L. S. Dynamical Systems and Turbulence, Berlin : Springer-Verlag, 1981. 被引量:1
  • 9CHOLEWO T, ZURADA J M. Sequential network construction for time series prediction [C]. Proceedings of the IEEE International Joint Conference on Neural Networks, 1997: 2034-2039. 被引量:1
  • 10GOLI)BERG D. Genetic algorithms in search, optimization and machine learning[M]. Addison-Wesley,Reading, MA, 1989. 被引量:1

同被引文献311

引证文献33

二级引证文献239

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部