摘要
文章研究了一类捕食种群、食饵种群均具有收获率的HollingⅢ类的功能反应生态系统.其中,食饵种群具有非线性密度制约,捕食者种群为线性密度制约.给出了此系统正平衡点全局稳定性的充分条件和生态解释.所得结果就其参数空间和相空间而言是广泛适用的.并且用Matlab对在特定参数下的系统进行了模拟.
This paper is devoted to the qualitative analysis of HollingⅢmodel with harvesting rates for a pradetor-prey system.Where the prey has the nonlinear density restriction, the predator has the linear density restriction.Conditions of the globle stability of nontrivial ,equilibra points are obtained.The biological interpretations of these conditions are discussed.The prase space and the changing rage of parameters are widely applied.
出处
《生物数学学报》
CSCD
北大核心
2009年第4期674-680,共7页
Journal of Biomathematics
基金
国家自然科学基金(30960187
30970478)
关键词
功能反应
平衡点
稳定点
收获率
极限环
Functional Response
Equilibrium point
Stability
Harvesting Rate
Limit Cycle