期刊文献+

具有Lévy跳的随机时滞食饵-捕食模型的最优收获

Optimal harvesting of a stochastic delays predator-prey model with Lévy jumps
下载PDF
导出
摘要 研究了一类带Lévy跳的时滞食饵-捕食模型的捕捞策略.利用比较原理分析物种平均持久性和灭绝性的充分条件,在一定假设条件下证明了该模型分布的稳定性,运用遍历法建立最优收获策略存在的条件,得到了最优捕捞努力量和最大持续产量.最后通过数值模拟验证理论结果. The harvesting strategy of the delayed predator-prey model with Lévy jumps is studied.The sufficient conditions for the average persistence and extinction of species are analyzed by using the comparison principle,and the distributional stability of the model is proved under certain assumptions.The conditions for the existence of the optimal harvesting strategy are established by using the ergodicity method,and the optimal fishing effort and maximum sustained yield are obtained.Finally,the theoretical results are verified by numerical simulations.
作者 钟颖 韦煜明 ZHONG Ying;WEI Yuming(College of Mathematics and Statistics,Guangxi Normal University,541006,Guilin,Guangxi,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2024年第1期35-46,共12页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(11961074)。
关键词 食饵-捕食 Lévy跳 时滞 最优收获策略 predator-prey Lévy jump delay optimal harvesting strategy
  • 相关文献

参考文献5

二级参考文献32

  • 1Liu M, Bai C. Optimal harvesting of a stochastic logistic model with time delay[J]. J Nonlinear Sci, 2015,25 ..277-289. 被引量:1
  • 2Zou X, Li W, Wang K. Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process[J]. Appl Math Lett, 2013,26:170-174. 被引量:1
  • 3Liu M, Bai C. Optimal harvesting policy for a stochastic predator-prey model[J]. Appl Math Lett, 2104,34:22-26. 被引量:1
  • 4Gopalsamy K. Stability and oscillations in delay differential equations of Population Dynamics[M]. Dordrecht:Kluwer Ac- ademic, 1992. 被引量:1
  • 5Liu M. Optimal harvesting policy of a stochastic predator-prey model with time delay[J]. Appl Math Lett, 2015,48:102-108. 被引量:1
  • 6Lv J, Wang K. Definition on almost sure permanence of stochastic single species models[J]. J Math Anal Appl, 2015, 422:675-683. 被引量:1
  • 7Hu S G, Huang C M, Wu F K. Stochastic Differential Equations[M]. Beijing:Science Publishing House,2008. 被引量:1
  • 8Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources[M]. Seconded. New York Wiley, 1990. Beddington J R, 463-465. LiW, Wang K. 368:420-428. 被引量:1
  • 9May R M. Harvesting natural populations in a randomly fluctuating environment[J]. Science, 1977, 197. 被引量:1
  • 10Optimal harvesting policy for general stochastic Logistic population model[J]. J Math Anal Appl, 2010,. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部