期刊文献+

基于非线性组合模型的交通流预测方法 被引量:14

Traffic Flow Prediction Method Based on Non-linear Hybrid Model
下载PDF
导出
摘要 为开发智能交通系统,提出一种基于RBF和ARIMA网络非线性组合模型的短时交通流预测方法,采用三层结构的RBF网络将2种单一预测方法——RBF和ARIMA网络进行非线性组合,利用实测数据对3类方法进行仿真实验,结果表明,非线性组合模型的预测准确性高于各自单独使用时的准确性,组合模型发挥了2种单一方法各自的优势,是短时交通流预测的有效方法。 In order to develop the Intelligent Transportation System(ITS), combined RBF network with ARIMA forecast, a method of short-term traffic flow prediction is put forward. The hybrid forecasting method combines the two methods to make use of the non-linear RBF neural network which has a structure of three layers. The simulation test of the three forecasting methods is taken placed used field data, and the results show that the non-linear hybrid model, which takes advantage of the unique strength of the two models in linear and nonlinear modeling can produce more accurate predictions than that of single model. The hybrid model can be an efficient method to the short-term traffic flow prediction.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第5期202-204,共3页 Computer Engineering
基金 山东省自然科学基金资助项目(Y2006G32) 山东理工大学科研基金资助重点项目(2004KJZ02)
关键词 交通流 短时预测 RBF神经网络 非线性组合预测 traffic flow short-term prediction RBF neural network non-linear hybrid prediction
  • 相关文献

参考文献5

二级参考文献27

  • 1张敬磊,王晓原.交通事件检测算法研究进展[J].武汉理工大学学报(交通科学与工程版),2005,29(2):215-218. 被引量:56
  • 2[1]Ben-Akiva M,Koutsopoulos H N,Mukundan A.A dynamic traffic model system for ATMS/ATIS operations[J].IVHS Journal,1994,2(1):1-19. 被引量:1
  • 3[2]Cheslow M,Hatcher S G,Patel V M.An initial evaluation of alternative intelligent vehicle highway systems architecture[R].MITRE Report 92w0000063,MITRE Corporation, 1992. 被引量:1
  • 4[3]Davis G A,Nihan N L.Nonparametric regression and short term freeway traffic forecasting[J].Journal of Transportation Engineering,1991,117(2):178-188. 被引量:1
  • 5[4]Box G E P,Jenkins G M.Time series analysis:forecasting and control[R].San Francisco:Holden-Day,1977. 被引量:1
  • 6[5]Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering,1960,82(1):35-45. 被引量:1
  • 7[6]Okutani I,Stephanedes Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research,Part B,1984,18(1):1-11. 被引量:1
  • 8[7]Altman N S.An introduction to kernel and nearest-neighbor nonparametric regression[J].The American Statistician,1992,46(3):175-185. 被引量:1
  • 9[8]Dougherty M S.A review of neural networks applied to transport[J].Transportation Research,Part C,1995,3(4):247-260. 被引量:1
  • 10[9]Zhang H J,Ritchie S G,Lo Z P.Macroscopic modeling of freeway traffic using an artificial neural network[J].Transportation Research Record,1997,1588:110-119. 被引量:1

共引文献140

同被引文献84

引证文献14

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部